Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 1 Understanding the Math in Chemistry I. What are significant figures/digits? A. Significant figures (digits) are a combination of certain as well as uncertain numbers. B. Example: 48.3 Estimated Certain value 48.2896 (rounded up) 48.3101 (rounded down) This is the way I learned the sig. fig. rules 1. Any digit that is not zero is significant. 1234.56 6 significant figures 1234.56 6 significant figures 2. Zeros between non-zero digits are significant. 1002.5 5 significant figures 3. Zeros to the left of the first non-zero digit are not significant. 000456 3 significant figures 0.0056 2 significant figures 4. If the number is greater than one (1), then all zeros to the right of the decimal point are significant. 457.12 5 significant figures 400.00 5 significant figures 5. If the number is less than one, then only zeros that are at the end of the number and between non-zero digits are significant. 0.01020 4 significant figures 6. For numbers that do not contain decimal points, the trailing zeros may or may not be significant. In this course assume the digits are significant unless told otherwise. 1000 1, 2, 3, or 4 significant figures. UNCLEAR assume 4 in calculation 0.0010 2 significant figures 1.000 4 significant figures 7. Assume defined and counted quantities have an unlimited number of significant figures. This will not be the way I teach it to you!! Here are two simple rules!! Know them! C. Significant Figures RULES Rule #1: Rule #2: If a decimal point is present count from Left to Right (L R) DO NOT START WITH 0 If a decimal point is absent count from Right to Left (L R) DO NOT START WITH 0 D. Predict the amount of sig. figs in the following: 1. 138.7 2. 100 3. 0.00320 4. 0.0050 5. 89.0 6. 890 7. 0.0030 8. 1000 4 sig. figs. 1 sig. fig. 3 sig. figs. 2 sig. figs. 3 sig. figs. 2 sig. figs. 2 sig. figs. 1 sig. fig. 9. 1000. 10. 10500 4 sig. figs. 3 sig. figs. II. Scientific Notation A. General Equation: Examples: 1≤ M <10 Is this an acceptable M? Answer: 1.387 X 10 2 1. 138.7 . How many places do you have to move the decimal to get to an acceptable M? 2. 100 Answer: 1 X 10 2 3. M X 10n 0.000320 Answer: 3.20 X 10 -4 n= the number of decimal places moved to get to an acceptable M value +n= greater than 1 -n = less than 1 # of sig. figs in value must match the # of sig figs in scientific notaion B. On your own: 4. 5. 6. 0.0050 89.0 890 Answer: 5.0 X 10 -3 Answer: 8.90 X 101 Answer: 8.9 X 10 2 Answer: 3. 0 X 10 -3 7. 0.0030 8. 1000 Answer: 1 X 10 3 9. 1000. Answer: 1.000 X 103 10. 10500 Answer: 1.05 X 104 C. Going backwards 1.50 X 10 3.5 X 10 2 -4 Move decimal point to make it larger than 1 Move decimal point to make it smaller than 1 150. .00035 Warm up 9/6 Are these equal? If they are, write yes, if not, correct the “regular” value. 1. 2. 3. 4. 2.5 X 10-4 = .000025 9.91 X 102= 991 4.500 X 103= 4500 5.700 X 10 -3= .057 Incorrect: .00025 Correct Incorrect: 4500. Incorrect: .005700 Rounding Rules III. Adding and Subtracting Rounding Rules The answer must contain as many decimal places as the least accurate value (the one with the least # of decimal places) 1. 122.5 L.a 2. 101 52.68 + 2.11 177.29 177.3 + 3. 4. 6.8 86.232 3.17 - 5.00_____ 110.97 111 122.4 0.05 + 1.000 123.45 81.232 81.23 123.4 123.5 If you stand on the scale and it says: 122.5lbs? Would it be fair to say 123??? I don’t think so!! Why do you always round up?? IV. ODD/EVEN Rule is used when only a 5 is next to the digit you are interested in rounding…… ODD Digit Round up Even Digit Leave it alone (EVEN…LEAVIN!!) Let’s practice rounding to 3 sigs figs. 1. 2. 107.5= 112.5= 108 112 1.16 3. 1.155 4. 9.8451= 9.85 5. 854.54= 855 6. .02545= .0254 V. Multiplication and Division Rules The answer must contain as many significant figures as the value with the least number of significant figures Examples: 3 4 1. 35.72 (0.00590)= 5 2. 3. 4. 3 4450/ 5.00= 4 .211 2 6810.2/2.4 = 3 .210748 2837.58333 2800 How many sig figs? 890 890. 3 .3287 (45.2)= 14.85724 14.9 d. Mixture Homogeneous Mixture: Visible components are all similar Heterogeneous Mixture: Has visible distinction between parts VII. Changes in Matter can be physical or chemical A. Physical change: Identity of substance is NOT altered. B. Chemical change: New substance has different set of properties. Changes in Matter Video clip DENSITY may affect your DESTINY! Is it a compliment if someone says……You’re DENSE! According to your understanding…. What’s more dense? A Rock or A Sponge Ice Cubes or Liquid Water Ice (H2O(s)) Liquid water (H2O(l)) Water expands 11% when it freezes Oil Adding water based food coloring Water Which one is more dense?? WWF Wrestler Sumu Wrestler Coke v. Diet Coke So what’s the difference between accuracy and precision? Accuracy refers to how closely a measured value agrees with the correct value. Precision refers to how closely individual measurements agree with each other. The repeatability of the results. accurate (the average is accurate) not precise precise not accurate accurate and precise Definition for Density • The amount of matter in a certain amount of space (volume) Equation for Density D=Mass (g) Volume (ml) or (cm3)