Download Multiplication & Division Rule for exponents

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Multiplication and
Division of Exponents
Notes
Multiplication Rule
x x x
n
m
n m
In order to use this rule the base numbers
being multiplied must be the same.
Example:
3
x x
4
Written in multiplication form
x x x x x x x  x
Using Rule

x
34
x
7
7
Example 1
2 2
3
2*2*2
2
5
2*2*2*2*2
3 5
2
8

Example 2
x x x
354
3
5
x
x
12
4
Example 3
x x  y  y z
4
3
Remember

x
14
x

5
y
34
7
y z
4
xx
z
1
Example 4
3
5
3
2
(2x y )(3xy )( x y)
Multiply coefficients and add exponents of like bases
6x

(312) (531)
y
6x y
6

9
Example 5
4 x (2x y  5xy )
5
2
2
In order to simplify you must distribute. Since you are
multiplying when you distribute you must use the
multiplication rule for exponents

8x
52
y  20x
51
8x y  20x y
7
6
2
y
2

You Try
Simplify each expression
1.
2.
3,
4.
5.
y y
4
6
15x 3
2
(3x )(5x)
7
x
x x

5 6
3 
2
2 4
ab
(a b )(a b )
3
4
12y 3
2
(4 y )(3y)

5
6.
y
2
2
4
6
(x y )(x y )


9
x y
8


Simplify (remember when
adding only add coefficients of
like terms)
1.
2.
3x (2x  5x  2)
3
2
2x(4x 1)
4x(x  5)  (x 2  6x  8)


4.
4
3
8x 2  2x

3.
6x 15x  6x
5
4x 5 (2x 3  6x) 12x 6

4 x 2  20x  x 2  6x  8
5x 2  26x  8
8x 8  24 x 6 12x 6
8x 8  36x 6
Division Rule: If the bases are the
same subtract the exponents
m
x
mn
x
n
x
x 5 x x x x x
2


x
x3
x x x


5
OR
x
53
2

x

x
x3
Always do top
exponent minus
bottom exponent
Examples
1.
2.



3.
x2y6
xy 2
6a 7b 3
2ab 2

x 5  x8
x3

x
21
y
62
 xy
3a 71b 32  3a 6b
4
Divide coefficients,
subtract exponents of
the like bases.
x 58 x13
133
10
Use multiplication rule


x

x
3
3
x
x
on top, then use
division rule
Special Cases ( zero power):
any base raised to a power of
zero equals 1
x 1
0
Here is why, when the number in the numerator is the same as
the number in the denominator, the quotient is always 1.
2 42 * 2 * 2 * 2

1
4
2
2*2*2*2
So it makes
sense that
24
44
0

2

2
1
4
2
Examples
Simplify
3 4
1.
2.



ab
3
ab
a
10x 4 y 3
5x 4 y 2
2x 44 y 32  2x 0 y1  2 *1y  2y
33 41
b
 a b  1b  b
0 3
3

3.
m10 n 5

10 5
m n

1010
m
n
55
 m n  1*1  1
0
0
3
Related documents