Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Manipulate real and complex numbers and solve equations AS 91577 Worksheet 1 Quadratics General formula: y = ax + bx + c 2 General solution: -b ± b - 4ac x= 2a 2 Example 1 y = x + 3x + 3 2 Equation cannot be factorised. x + 3x + 3 = 0 2 Using quadratic formula We use the substitution - i =1 2 A complex number x + 3x + 3 = 0 2 The equation has 2 complex solutions 3 3i x= ± 2 2 Real Imaginary Equation has 2 complex solutions. b - 4ac < 0 2 Example 2 x - 2x + 5 = 0 2 2± 2 -4´5 Þx= = 2 2 Example 2 x - 2x + 5 = 0 2 2 ± 2 - 4 ´ 5 2 ± -16 Þx= = 2 2 2 Example 2 x - 2x + 5 = 0 2 2 ± 2 - 4 ´ 5 2 ± -16 Þx= = 2 2 2 ± 4i Þx= = 1± 2i 2 2 Adding complex numbers Subtracting complex numbers Example z = 3+ i w = -1+ 2i Example z = 3+ i w = -1+ 2i Þ z + w = ( 3 -1) + i(1+ 2) = 2 + 3i Multiplying Complex Numbers (x + yi)(u + vi) = (xu – yv) + (xv + yu)i. Example (3 + 4i)(5 - 2i) = Example ( 3 + 4i)(5 - 2i) = ( 3 ´ 5 + 4 ´ 2) + ( 3´ 2 + 4 ´ 5)i = 23 + 14i Example 2 (3x + 2y)( 3x - 2y) = 9x 2 (3x + 2iy)(3x - 2iy) = 9x - 4y 2 2 + 4y 2 Conjugate If z = 3+ 4i The conjugate of z is If z = 3- 4i z = 2 - 5i The conjugate of z is z = 2 + 5i Dividing Complex Numbers a + ib a + ib c - id = ´ = c + id c + id c - id (ac + bd) + i(bc - ad) 2 2 c +d Example z = 2 - 3i z 2 - 3i = w -1+ 4i w = -1+ 4i Example z = 2 - 3i w = -1+ 4i z 2 - 3i -1- 4i = ´ w -1+ 4i -1- 4i Example z = 2 - 3i w = -1+ 4i z 2 - 3i -1- 4i = ´ w -1+ 4i -1- 4i -2 -12) + i(-8 + 3) -14 5 ( = = - i 2 2 1 +4 17 17 Solving by matching terms x + 3+ 2iy = 7i Match real and imaginary - x + 3 = 0 Þ x= 3 Imaginary 2y = 7 Þ y = 3.5 Real Solving polynomials Quadratics: 2 solutions 2 real roots 2 complex roots If coefficients are all real, imaginary roots are in conjugate pairs y = x - 2x + 5 = 0 2 If coefficients are all real, imaginary roots are in conjugate pairs y = x - 2x + 5 = 0 2 x =1- 2i and x = 1+ 2i Cubic Cubics: 3 solutions 3 real roots 1 real and 2 complex roots Quartic Quartic: 4 solutions 2 real and 2 imaginary roots 4 real roots 4 imaginary roots Solving a cubic x + x -2 =0 3 2 This cubic must have at least 1 real solutions f (1) = 0 Þ x -1 is a factor and x =1 is a solution Form the quadratic. ( x -1)(x 2 + 2x + 2) = 0 x = 1, -1 - i, 1 + i Solve the quadratic for the other solutions Finding other solutions when you are given one solution. If z = 1+ i is a root of the equation z 3 - 5z 2 + 8z - 6 = 0, find the other roots Because coefficients are real, roots come in conjugate pairs so z =1- i is also a root of the equation Form the quadratic i.e. z - (1+ i + 1- i)z + (1+ i)(1- i) 2 z - 2z + 2 2 Form the cubic: (z - 2z + 2)(z - 3) = 0 2 Argand Diagram z = 3- 2i Just mark the spot with a cross Plot z = 3 + i z Adding z = 3+ i and w = -1+ 2i z=i z = -1 z =1 z = -i Multiplying a complex number by a real number. (x + yi) u = xu + yu i. Multiplying a complex number by i. z i = (x + yi) i = –y + xi. Reciprocal of z 1 1 x - iy x - iy z = = ´ = 2 z x + iy x - iy x + y 2 -1 Conjugate If z = x + iy, then z = x - iy Rectangular to polar form Using Pythagoras Modulus is the length x 2 + y 2 = r2 z = x2 + y2 = r Argument is the angle y tan q = x Check the quadrant of the complex number Modulus is the length Example 1 Rectangular form z = 3+ 4i Modulus = z = 32 + 4 2 = 5 4 tan q = Þ q = 0.927 (53.1°) 3 Polar form z = 5cos(0.927) + 5isin(0.927) = 5cis(0.927) Example 2 z = 3- 4i Modulus = z = 32 + 4 2 = 5 -4 tan q = Þ q = 0.927 ( 53.1°) 3 z = 5cis( 0.927) - - - = 5cos( 0.927) + 5isin( 0.927) Example 3 z = -3- 4i Modulus = z = 3 + 4 = 5 2 2 -4 tan q = Þ q = p + 0.927 (= 4.069) -3 z = 5cis( 4.069) = 5cos(4.069) + 5isin(4.069) Converting from polar to rectangular æpö æpö æpö z = 6cis ç ÷ = 6 ´ cos ç ÷ + 6 ´ sin ç ÷ i è 6ø è 6ø è 6ø z = 3 + 3 3i Multiplying numbers in polar form Example 1 æp ö æp ö z = 3cisç ÷ and w = 2cisç ÷ è6ø è4ø æp p ö æ 5p ö zw = 3 ´ 2cisç + ÷ = 6cisç ÷ è6 4ø è 12 ø Multiplying numbers in polar form Example 2 Take out multiples of 2p æ 5p ö æ 7p ö z = 5cisç ÷ and w = 6cisç ÷ è 4 ø è 3ø æ 5p 7p ö æ 43p ö zw = 5 ´ 6cisç + ÷ = 30cisç ÷ è 4 è 12 ø 3ø æ19p ö zw = 30cisç ÷ è 12 ø Remove all multiples of 2p (360°) De Moivre’s Theorem (rcisq) Example 1 n = r cis(nq ) n æ pö p 3p 3 ç2cis ÷ = 2 cis(3 ´ ) = 8cis è 4ø 4 4 3 De Moivre’s Theorem (rcisq) Example 2 n = r cis(nq ) n Take out multiples of 2p æ 5p ö 5p 4 ç 3cis ÷ = 3 cis(4 ´ ) = 81cis5p = 81cis(p ) è 4ø 4 4 Solving equations using De Moivre’s Theorem z + 81i = 0 Þ z = -81i 4 4 æ -p ö z = 81cisç ÷ 1. Put into polar form è 2 ø æ ö p 4 2. Add in multiples of 2p z = 81cisç2np - ÷ è 2ø 4th root 81 3. Fourth root æ 2np p ö z = 3cisç - ÷ è 4 8ø 4 4. Generate solutions -p Divide angle by 4 z1 = 3cis Letting n = 0, 1, 2, 3 8 z3 = 3cis 7p 8 3p z2 = 3cis 8 11p z4 = 3cis 8 Take note: 24i = 24cis -24 = 24cisp p 2 24 = 24cis0 -p -24i = 24cis 2 Useful websites Good general level http://www.clarku.edu/~djoyce/complex/ Advanced level http://mathworld.wolfram.com/ComplexNumber.html Good general level http://www.purplemath.com/modules/complex.htm Good general level- Also gives proofs http://www.sosmath.com/complex/complex.html Problems at 3 levels http://www.ping.be/~ping1339/Pcomplex.htm#READTHIS-FIRST