* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lecture 3 - UniMAP Portal
Valve RF amplifier wikipedia , lookup
Schmitt trigger wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Voltage regulator wikipedia , lookup
Current source wikipedia , lookup
Power MOSFET wikipedia , lookup
Opto-isolator wikipedia , lookup
Current mirror wikipedia , lookup
Power electronics wikipedia , lookup
Surge protector wikipedia , lookup
Switched-mode power supply wikipedia , lookup
ELECTRICAL TECHNOLOGY EET 103/4 Define and explain the meaning of current, voltage, resistance, power, conductor, and insulator 1 Ohm’s Law Cause Effect Opposition Every conversion of energy from one form to another can be related to this equation. In electric circuits the effect we are trying to establish is the flow of charge, or current. The potential difference, or voltage between two points is the cause (“pressure”), and resistance is the opposition encountered. 2 Ohm’s Law Simple analogy: Water in a hose Consider the pressure valve as the applied voltage and the size of the hose as the source of resistance. Electrons in a copper wire are analogous to water in a hose. 3 Ohm’s Law The absence of pressure in the hose, or voltage across the wire will result in a system without motion or reaction. A small diameter hose will limit the rate at which water will flow, just as a small diameter copper wire limits the flow of electrons 4 Ohm’s Law Developed in 1827 by Georg Simon Ohm For a fixed resistance, the greater the voltage (or pressure) across a resistor, the more the current. The more the resistance for the same voltage, the less the current. Current is proportional to the applied voltage and inversely proportional to the resistance. 5 6 Ohm’s Law E I R Where: I = current (amperes, A) E = voltage (volts, V) R = resistance (ohms, ) E is the source voltage and V is voltage drop across R 7 Ohm’s Law For any resistor, in any network, the direction of current through a resistor will define the polarity of the voltage drop across the resistor 8 Ohm’s Law 9 Ohm’s Law 10 Example 4.3. Calculate I: V 16 V I R 2 103 11 Example 4.4. Calculate the voltage that must be applied across the soldering iron to establish a current of 1.5 A through the iron it its internal resistance is 80 12 Power Power is an indication of how much work (the conversion of energy from one form to another) can be done in a specific amount of time; that is, a rate of doing work. W P t P in watt (W), W in joule (J), t in second (s) 13 Power Power can be delivered or absorbed as defined by the polarity of the voltage and the direction of the current. The power delivered or absorbed in terms of voltage and current can be found as follows; W QV Q P V VI t t t 14 Power V V2 P VI V R R Or; P VI IR I I 2 R 15 Power Example 4.6 Find the power delivered to the dc motor in the following figure; Solution P EI 120 V5 A 600 W 0.6 kW 16 Power Example 4.9 Determine the current a 5 k resistor when the power dissipated by the element is 20 mW Solution P I 2R I 3 P 20 10 3 2 10 A 2 mA 3 R 5 10 17 Energy Energy (W) lost or gained by any system is determined by: W Pt Since power is measured in watts (or joules per second) and time in seconds, the unit of energy is the wattsecond (Ws) or joule (J) 18 Energy • The watt-second is too small a quantity for most practical purposes, so the watt-hour (Wh) and kilowatt-hour (kWh) are defined as follows: Energy (Wh) power (W) time (h) power (W) time (h) Energy (kWh) 1000 19 Energy • The killowatt-hour meter is an instrument used for measuring the energy supplied to a residential or commercial user of electricity. 20 21 Example 4.11 How much energy (in kWh) is required to light a 60-W bulb continuously for 1 year (365 days)? Solution: Pt 60 W 24 h/day 365 days W 1000 1000 525.6 kWh 22 Example 4.14 What is the total cost of using all of the following at RM0.25 per kWh? A 1200 W toaster for 30 min Six 50 W bulbs for 4 h A 400 W washing machine for 45 min A 4800 W electric clothes dryer for 20 min. 23 Solution: 1200 W 0.5 h 650 W 4 h W 1000 400 W 0.75 h 4800 W 0.33 h 1000 3700 Wh 3.7 kWh 1000 Cost 3.7 kWh RM0.25 / kWh RM0. 93 24 25 Efficiency 26 Efficiency Efficiency () of a system is determined by the following equation: Po Pi Where: = efficiency (decimal number) Po = power output Pi = power input 27 Efficiency The basic components of a generating (voltage) system are depicted below, each component has an associated efficiency, resulting in a loss of power through each stage. 28 Efficiency Overall efficiency; 1 2 3 ...... n 29