* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download for t>0.
Josephson voltage standard wikipedia , lookup
Integrating ADC wikipedia , lookup
Index of electronics articles wikipedia , lookup
Surge protector wikipedia , lookup
Power MOSFET wikipedia , lookup
Schmitt trigger wikipedia , lookup
Flexible electronics wikipedia , lookup
Current mirror wikipedia , lookup
Operational amplifier wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Zobel network wikipedia , lookup
Regenerative circuit wikipedia , lookup
Integrated circuit wikipedia , lookup
Current source wikipedia , lookup
Two-port network wikipedia , lookup
Opto-isolator wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Rectiverter wikipedia , lookup
Linear Circuit Analysis In an oscilloscope a timing signal called a horizontal sweep acts as a time base, which allows one to view measured input signals as a function of time. In practice, the linear increase in voltage is approximated by the “linear” part of an exponential response of an RC circuit. First-Order RL and RC Circuits 1. What is a first-order circuit? A first-order circuit is characterized by a first-order differential equation. It consists of resistors and the equivalent of one energy storage element. Typical examples of first-order circuits: R R + US + L _ (a) First-Order RL circuit US C _ (b) First-Order RC circuit Interconnections of sources, resistors, capacitors, and inductors lead to new and fascinating circuit behavior. R A loop equation leads to U S Ri uC + + US uC _ i C _ duC since i C dt duC uC dt First-Order RC circuit duC 1 1 uC US or , equivalently, dt RC RC U S RC This equation is called Constant-coefficient first-order linear differential equation Apply duality principle, diL 1 1 iC IS dt GL GL 2. Some mathematical preliminaries duC 1 1 uC US dt RC RC diL 1 1 iC IS dt GL GL RC circuit first-order differential equation RL circuit first-order differential equation The first-order RL and RC circuits have differential equation models of the form dx( t ) x( t ) f ( t ), or , equivalently, dt dx( t ) x( t ) f ( t ), dt x ( t 0 ) x0 x ( t 0 ) x0 valid for t≥t0, where x(t0)=x0 is the initial condition. The term f(t) denotes a forcing function. Usually, f(t) is a linear function of the input excitations to the circuit. The parameter λdenotes a natural frequency of the circuit. or dx( t ) x( t ) f ( t ), x( t 0 ) x0 dt dx( t ) x( t ) f ( t ), x( t 0 ) x0 dt The main purpose of this chapter is to find a solution to the differential equation. The solution to the equation for t≥t0 has the form x( t ) e ( t t0 ) t x( t 0 ) e ( t ) f ( )d t0 (1) Satisfies the differential equation (2) Satisfies the correct initial condition, x(t0)=x0 dx( t ) x( t ) f ( t ), dt x ( t 0 ) x0 Integrating factor method First step, multiply both sides of the equation by a so-called integrating factor e-λt. t dx ( t ) t t e e x ( t ) e f (t ) By the product rule dt for differentiation, dx( t ) d t e t x(t ) e t f (t ) [e x ( t )] e t dt dt Integrate both sides of the equation from t0 to t as follows t t d t0 t e e x ( ) [ e x ( )] d e x ( t ) e x ( t ) 0 t0 f ( )d t0 d t0 t e t x( t ) e x( t ) e t0 ( t t0 ) t x ( t 0 ) e f ( )d t0 t x ( t 0 ) e ( t ) f ( )d t0 3. Source-free or zero-input response iR R + uL _ iL L + R (a ) (a) KCL implies + uR uC _ _ (b) iC C A parallel connection of a resistor with an inductor or capacitor without a source. In these circuits, one assumes the presence of an initial inductor current or initial capacitor voltage. (b) KVL implies i R i L uR uC uL L diL iR R R dt diL R iL dt L duC uR iC R RC dt du 1 C uC dt RC Both differential equation models dx( t ) 1 x(t ) x(t ) have the same general form, dt dx( t ) 1 x(t ) x(t ) dt The solution to the equation for t≥t0 has the form x ( t ) e ( t t0 ) x ( t 0 ) e t t0 x( t0 ) Where τ is a special constant called the time constant of the circuit. The response for t≥t0 of the undriven RL and RC circuit are, respectively, given by iL (t ) e R ( t t0 ) L uC ( t ) e iL (t0 ) 1 ( t t0 ) RC uC ( t0 ) RL circuit L GL R RC circuit RC The time constant of the circuit is the time it takes for the source-free circuit response to drop to e-1=0.368 of its initial value. For more general circuits, those containing multiple resistors and dependent sources, it is necessary to use the Thevenin equivalent resistance seen by the inductor or capacitor in place of the R. Linear Resistive circuit No independent sources Linear Resistive circuit No independent sources iL i L Thevenin equivalent iL (t ) e + uC L Rth L Rth ( t t0 ) L iL (t0 ) Thevenin equivalent C Rth _ uC (t ) e + 1 RthC ( t t0 ) uC (t0 ) uC _ C Example 1. For the circuit of the figure, find iL(t) and uL(t) for t ≥0 given that iL(0-)=10A and the switch S closes at t=0.4s. Then compute the energy dissipated in the 5Ω resistor over the time interval [0.4, ∞). S t 0.4s + 5 20 uL _ iL 8H 一阶电路的初始条件 稳态(steady state) 代数方程描述 瞬态(transient state) 微分方程描述 (1)问题的提出 u( t ) / V + US _ US + u(t) R _ K 0 过渡期为零 t/s R u( t ) / V K + + US u(t) _ _ 换路 过渡状态 C 过渡状态 US 换路 0 t0 第一个稳定状态 t1 t2 第二个稳定状态 t3 t/s 第三个稳定状态 (2)电路的初始条件 ① t=0- 和 t =0+ 的概念 认为换路在 t =0 时刻进行 t =0- 换路前一瞬间 f (0 ) lim f ( t ) t =0+ 换路后一瞬间 f (0 ) lim f ( t ) 初始条件为 t =0+ 时u、i 及其各阶导数的值 ② 电容的初始条件 i + uC _ 1 uC ( t ) C 1 i ( ) d C t 0 t 0 t 0 t 0 0 1 t i ( )d C 0 i ( )d 1 t uC (0 ) i ( )d C C 0 0 1 t=0+ 时 uC (0 ) uC (0 ) i ( )d C 0 当 i ( ) 为有限值 uC (0 ) uC (0 ) q CuC q(0 ) q(0 ) 电荷守恒 t 换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前后保持不变。 ③ 电感的初始条件 iL + u _ 1 t 1 0 1 t i L ( t ) u( )d u( )d u( )d L L L 0 1 t i L (0 ) u( )d L L 0 0 1 t=0+ 时 i L (0 ) i L (0 ) u( )d L 0 当 u( ) 为有限值 i L (0 ) i L (0 ) LiL (0 ) (0 ) 磁链守恒 换路瞬间,若电感电压保持为有限值,则电感电流(磁链)换路前后保持不变。 ④ 换路定律 反映了能量不能跃变 q(0 ) q(0 ) 换路瞬间,若电容电流保持为有限值, uC (0 ) uC (0 ) 则电容电压(电荷)换路前后保持不变。 (0 ) (0 ) 换路瞬间,若电感电压保持为有限值, i L (0 ) i L (0 ) 则电感电流(磁链)换路前后保持不变。 例1 电路如图所示,试求 iC (0 ) 。 10k 解: ① 画出 0 电路,求出 uC (0 ) 0 电路 + 10k iC + 10V _ 40k iC (0 ) 0 A 40 uC (0 ) 10 8V 10 40 ② 由换路定律 uC (0 ) uC (0 ) 8V ③ 画出 0 电路,求出 iC (0 ) + 电容 开路 iC 40k C 10V _ 0 电路 电容用 电压源 替代 10k iC + 10V + 8V _ iC (0 ) uC _ K uC _ + _ 10 8 0.2mA 3 10 10 可见,iC (0 ) iC (0 ) 1 电路如图所示,试求 uL (0 ) 。 例2 解: ① 画出 0 电路,求出 i L (0 ) 0 电路 1 10V 4 iL + + 10V + uL _ _ uL (0 ) 0V 10 i L (0 ) 2A 1 4 电感 短路 4 iL + L uL K _ 0 电路 _ 1 电感用 电流源 替代 4 + + 2A 10V _ _ ② 由换路定律 uL (0 ) 4 2 8V i L (0 ) i L (0 ) 2 A ③ 画出 0 电路,求出 uL (0 ) uL 可见,uL (0 ) uL (0 ) 求解初始条件的步骤 ① 画 0- 等效电路,即换路前电路(稳定状态),求 uC(0-) 和 iL(0-)。 电容相当于开路 其中 电感相当于短路 ② 由换路定律得 uC(0+) 和 iL(0+)。 ③ 画 0+ 等效电路,即换路后的电路。 其中 电容用电压源来替代,大小为 uC(0+) 电感用电流源来替代,大小为 iL(0+)。 电压源和电流源的方向均与原来的电压、电流方向一致。 ④ 由 0+ 电路求所需各变量的 0+ 值。 电路如图所示,试求 iC (0 ) ,uL (0 ) 。 例3 L iL _ + uL 解: ① 画出 0 电路,求出 uC (0 ) ,i L (0 ) 0 电路 iS iL R + uC _ uC (0 ) Ri S V R K t 0 iS iC uC C _ iS 0 电路 _ + uL i L (0 ) i S A iC R i L (0 ) i L (0 ) i S A i (0 ) u (0 ) 0 ③ 画出 电路,求出 C ,L + Ri S _ ② 由换路定律 uC (0 ) uC (0 ) Ri S V + RiS iC (0 ) iS 0A R uL (0 ) Ri S V 例4 电路如图所示,试求开关K闭合瞬间各支路的电流和电感上的电压。 解: 0 电路 2 2 iL + 48V _ iL + L uL i 2 3 + uC + K 48V _ _ 2 _ 2 48 24V 22 48 i L (0 ) i L (0 ) 12 A 22 48 24 iC (0 ) 8A 3 uC (0 ) uC (0 ) i (0 ) i L (0 ) iC (0 ) 20 A uL (0 ) 48 2 12 24V 3 iC + uC C _ 0 电路 i + + 48V _ 12 A iL 2 uL _ 3 iC + 24V _ 例5 电路如图所示,试求开关K闭合瞬间流过它的电流值。 解: 0 电路 L iL + uC 100 100 + iL _ + uC 100 100 K 200V _ 0 电路 uC (0 ) uC (0 ) 100i L 100V 200 100 i K (0 ) 1 2A 100 100 100 + _ 200 i L (0 ) i L (0 ) 1A 100 100 _ 100 200V C 1A + uL 100 _ + 100V iC _ iK 100 + 200V _ 100 单位阶跃函数及分段常量信号 u( t ) 单位阶跃函数 1 0 t 0 u( t ) 1 t 0 0 延时(delayed)单位阶跃函数 u( t ) 0 t t 0 u( t t0 ) 1 t t0 1 分段常量信号(piecewise-constant signal) f (t ) t0 0 f (t ) 1 1 0 t t0 t (矩形)脉冲(pulse) 0 t0 2t 0 3t 0 脉冲串(pulse train) t t 运用阶跃函数和延时阶跃函数,分段常量信号可以表示为一系列阶跃信号之和。 f (t ) f (t ) 1 1 t0 0 t f (t ) u(t ) u(t t0 ) 0 t0 2t 0 3t 0 t f (t ) u(t ) u(t t0 ) u(t 2t0 ) u(t 3t0 ) f (t ) A 0 A t0 2t 0 t f (t ) Au(t ) 2 Au(t t0 ) Au(t 2t0 ) Example 8.2. For the circuit of the figure, find iL(t) and uL(t) for t ≥0 given that iL(0-)=10A and the switch S closes at t=0.4s. Then compute the energy dissipated in the 5Ω resistor over the time interval [0.4, ∞). t 0.4s S Solution iL + Step 1. With switch S open, compute uL 8H 20 5 the response for 0≤t ≤0.4s. _ From the continuity property of the i (0 ) i (0 ) 10 A inductor current, L L iL (t ) e Rth t L i L (0 ) 10e 2.5 t A Step 2. With switch S closed, compute the response for t ≥0.4s. Rth 20 // 5 4 iL (t ) e Rth ( t t0 ) L 0.5( t 0.4) 0.5( t 0.4) 3.679 e A i (0.4) e iL (t0 ) L Step 3. Write the complete response as a single expression. i L ( t ) 10e 2.5 t [u( t ) u( t 0.4)] 3.679e 0.5( t 0.4) u( t 0.4) A Step 4. Plot the complete response. iL ( t ), A 0.4s The 0.4s time constant has a much faster rate of decay than the lengthy 2s time constant. 2s t, s for 0≤t ≤0.4s, uL ( t ) e t 0.4s S Step 5. Compute uL(t). Rth t L uL (0 ) in particular, uL (0 ) 20 iL (0 ) 200 A + 5 20 uL iL 8H _ 2.5 t hence, uL ( t ) 200e V for t ≥0.4s, uL ( t ) e Rth ( t 0.4) L uL (0.4) 14.716e 0.5( t 0.4)V in particular, uL (0.4) 4 iL (0.4 ) 14.716V Step 6. Compute energy dissipated in the 5Ω resistor over the time interval [0.4, ∞). uL2 ( t ) [14.716e 0.5( t 0.4) ]2 p5 ( t ) 43.3e ( t 0.4)W 5 5 W5 (0.4, ) 43.3 e ( t 0.4)dt 43.3J 0.4 Example 8.3. Find uC(t) for t ≥0 for the circuit of the figure given that uC(0)=9V. Solution S t 0 72 t 1 4.5 + 9 0.1F uC Step 1. Compute the response for 0≤t ≤1s. By the continuity of the capacitor voltage, _ uC (0 ) uC (0 ) 9V hence, uC (t ) e 1 RthC t uC (0 ) 9e 1.25 tV Step 2. Compute the response for t ≥ 1s. uC (t ) e 1 RthC ( t t0 ) uC (t0 ) 2.58e t 1 0.3 V Step 3. Use step functions to specify the complete response. uC (t ) 9e 1.25 t [u(t ) u(t 1)] 2.58e t 1 0.3 u(t 1)V Step 4. Obtain a plot of the response. uC ( t ),V 0.8s 0.3s t, s Here the part of the response with the 0.3s time constant shows a greater rate of decay than the longer 0.8s time constant. Exercise. Suppose that in example 2 the switch moves to the 4.5Ω resistor at t=0.5s instead of 1s. Compute the value uC(t) at t=1.2s. S t 0 72 t 0.5 4.5 + 9 0.1F uC _ Example 8.4. Find uC(t) for the circuit of the figure, assuming that gm=0.75S and uC(0-)=10V. a + gm ux Solution + ux 4 0.25F uC _ _ b It is straightforward to show that the Thevenin equivalent seen by the capacitor is a negative resistance, Rth 2 Thevenin equivalent a + 2 0.25F uC _ b hence, uC (t ) e 1 RthC t uC (0 ) 10e 2 t u( t )V Because of the negative resistance, this response grows exponentially, as shown in the figure. A circuit having a response that increases without bound is said to be unstable. uC ( t ),V Negative resistance causes capacitor voltage to increase without bound. t, s Exercise. In example 3, let gm=0.125S. Find the equivalent resistance seen by the capacitor and uC(t), t ≥0. a + gm ux + ux 4 0.25F uC _ _ b 示例 已知图示电路中的电容原本充有 24V 电压,求K闭合后,电容电压和 各支路电流随时间变化的规律。 解:本题为求解一阶 RC 电路零输入响应问题 则有 uC U 0e 又由已知条件 t RC K t 0 5F uC uC 24 e V t uC i1 6 e 20 A 4 3 _ U 0 24V t 20 i2 + RC 4 5 20s 2 i1 6 等效电路 t > 0 t 0 i1 t 0 + t 20 2 利用并联分流,得 i2 i1 4e A 3 t 1 i3 i1 2e 20 A 3 5F t 0 t 0 uC _ 4 i3 t = 0 时 ,开关K由1→2,求电感电压和电流。 示例 K ( t 0) 解: RL电路零输入响应问题 iL I 0e R t L + A t 0 24V 2 3 iL 6H _ I 0 i L (0 ) i L (0 ) 1 2 24 6 2A 2 3 // 6 4 3 6 4 4 _ R L 6 1s R 6 + i L 2e t A t 0 diL 12e tV dt uL t 0 R (2 4) // 6 3 6 uL L + t 0 6H uL _ iL 6 小结 ① 一阶电路的零输入响应是由储能元件的初值引起的响应, 都是由初始值 衰减为零的指数衰减函数。 x(t ) x(0 )e t t 0 RC 电路 uC (0 ) uC (0 ) RL 电路 i L (0 ) i L (0 ) ② 衰减快慢取决于时间常数 。 RC 电路 RC RL 电路 GL L R R 为与动态元件相连的一端口电路的等效电阻。 ③ 同一电路中所有响应具有相同的时间常数。 ④ 一阶电路的零输入响应和初始值成正比,称为零输入线性。 4. DC or step response of first-order circuits This section takes up the calculation of voltage and current responses when constant voltage or constant current sources are present. Rth Linear Resistive circuit With independent sources Linear Resistive circuit With independent sources i L Thevenin equivalent L + + U oc uL iL L _ _ Rth + uC _ Thevenin equivalent C + U oc _ + uC _ iC C Deriving the differential equation models characterizing each circuit’s voltage and current responses. Rth Rth + + U oc uL _ iL L _ By KVL and Ohm’ law, uL U oc Rth iL diL L dt Rth diL 1 iL Uoc dt L L + U oc _ + uC iC C _ By KCL and Ohm’ law, iC du U oc uC C C Rth dt duC 1 1 uC U oc dt RthC RthC Exercise. Constant differential equation models for the parallel RL and RC circuits of the figure. Note that these circuits are Norton equivalents of those in the figure. Again choose iL(t) as the response for the RL circuit and uC(t) as the response for the RC circuit. + I sc Answers: Rth uL _ iL L + I sc Rth Rth diL iL I sc dt L L duC 1 1 uC I sc dt RthC C Rth uC _ iC C Rth diL 1 iL Uoc dt L L duC 1 1 uC U oc dt RthC RthC Rth Rth diL iL I sc dt L L duC 1 1 uC I sc dt RthC C Observe that four differential equations have the same structure: dx ( t ) 1 dt where x( t ) F L Uoc I sc Rth Gth L , F Rth L L I U RthC , F sc oc C RthC for RL case for RC case And the general formula for solving such a differential equation: t ( t t0 ) x( t ) e x( t0 ) e ( t ) f ( )d t0 x( t ) e ( t t0 ) t x( t ) e ( t ) f ( )d 0 t0 1 where , x(0 ) x(0 ) as long as x(t) is a capacitor voltage or inductor current, and f(τ)=F is a constant (nonimpulsive) forcing function. x( t ) e e t t0 t x( t0 ) e t q t0 t t0 Fdq x ( t0 ) F (1 e F [ x( t0 ) F ]e t t0 ) t t0 Which is valid for t≥t0. After some interpretation, this formula will serve as a basis for computing the response to RL and RC circuits driven by constant sources. x( t ) F [ x( t 0 ) F ]e t t0 if 0, then t t0 x() lim x(t ) lim{F [ x(t ) F ]e } t t U I sc oc for RL case Rth F U oc for RC case 0 Hence, the solution of the differential equation given constant or dc excitation becomes x( t ) x( ) [ x( t 0 ) x()]e t t0 i L ( t ) i L ( ) [i L ( t 0 ) i L ()]e Rth ( t t0 ) L uC (t ) uC () [uC (t0 ) uC ()]e t t0 RthC for RL case for RC case Example 8.5. For the circuit of the figure, suppose a 10V unit step excitation is applied at t=1 when it is found that the inductor current is iL(1-)=1A. The 10V excitation is represented mathematically as uin(t)=10u(t-1)V for t≥1. Find iL(t) and uL(t) for t≥1. Solution R 5 Step 1. Determine the circuit’s differential equation model. iL + + uin ( t ) _ L 2H uL _ R diL 1 th iL Uoc dt L L 2.5iL 5u( t 1) t 1 where the time constant 0.4s Step 2. Determine the form of the response. iL ( t ) {iL () [iL (1 ) iL ()]e t 1 }u( t 1) A Step 3. Compute iL(∞) and set forth the final expression for iL(t). R 5 + replace the inductor by a short circuit, uin ( t ) uin i L () 2 A I sc R and since i L (1 ) i L (1 ) 1 A _ 2.5( t 1) ]u( t 1) A It follows that, iL ( t ) [2 (1 2)e Step 4. Plot iL(t). [2 e 2.5( t 1) ]u(t 1) A iL + uL L 2H _ Step 5. Compute uL(t). di + uL (t ) L L uin ( t ) dt _ t 1 L [iL (1 ) iL ()]e u( t 1) R 5 iL + uL L 2H _ 5e 2.5( t 1) u(t 1)V Exercise. Verify that in example 4, uL(t) can be obtained without differentiation by uL (t ) U oc RthiL (t ) Exercise. In example 4, suppose R is changed to 4Ω. Find iL(t) at t=2s. Specifically, we need only compute x ( t0 ) , x( ) , and the time L constant or RthC . Rth Example 8.6. The source in the circuit of the figure furnishes a 12V excitation for t<0 and a 24V excitation for t≥0, denoted by uin(t)=12u(-t)+24u(t)V. The switch in the circuit closes at t=10s. First determine the value of the capacitor voltage at t=0-, which by continuity equals uC(0+). Next determine uC(t) for all t≥0. R1 6k Solution + t 10s + Step 1. Compute initial C uC uin ( t ) capacitor voltage 0.5mF _ _ uC (0 ) uC (0 ) 12V R2 3k Step 2. Obtain uC(t) for 0≤t ≤ 10s. R1C 3s, uC () 24V uC (t ) uC () [uC (0 ) uC ()]e t RthC t 3 24 12e V R1 6k Step 3. Compute the initial condition for the interval t>10. uC (10 ) uC (10 ) 24 12e 10 3 23.57V + uin ( t ) t 10s + R2 3k _ C 0.5mF uC _ Step 4. Find uC(t) for t>10. RthC 1s, Thevenin equivalent uC () 8V uC (t ) uC () [uC (10 ) uC ()]e 8 15.57e t 10 RthC ( t 10) V Step 5. Set forth the complete response using step functions. uC ( t ) (24 12e 10 3 Rth 2k + U oc 8V _ + C 0.5mF )[u( t ) u( t 10)] [8 15.57e ( t 10) ]u( t 10) uC _ Step 6. Plot uC(t). 3s 1s Exercise. Suppose the switch in example 5 opens again at t=20s. Find uC(t) at t=25s. 示例 t = 0 时 , 开关K闭合,已知 uC(0 ) = 0V,求(1)电容电压和电流; (2)uC=80V 时的充电时间 t 。 - K 解:(1) RC 电路零状态响应问题 + 100V RC 500 10 5 10 s 5 uC U S (1 e t 3 ) 100(1 e 200 t )V duC U S t iC e 0.2e 200 t A dt R (2)设经过 t 秒,uC=80V uC ( t ) 100(1 e 200 t ) 80 t 8.045ms _ t0 t0 i 10 F 500 + uC _ 例1 t = 0 时 , 开关K打开,求 t > 0 后 iL,uL 的变化规律 。 解: RL 电路零状态响应问题, 先化简电路 R1 + R 80 200// 300 200 L 2 0.01s R 200 80 10A K 2H uL iL t 0 US I S iL () 10 A R + i L 10(1 e 100 t ) A t 0 uL 10 200e 100 t 2000e 100 tV 200 300 _ 10A t0 2H uL _ iL R 例2 t = 0 时 , 开关K打开,求 t > 0 后 iL,uL以及电流源两端的电压 u 。 解: RL 电路零状态响应问题, 先化简电路 R 10 10 20 U S 2 10 20V 5 10 + + 2A u 10 2H uL _ iL K _ L 2 0.1s R 20 US iL ( ) 1 A R i L (1 e 10 t )A uL U S e 10 t 20e 10 tV u 5 I S 10i L uL 20 10e 10 tV t 0 R + US _ + 2H uL iL _ 全响应的两种分解方式 US ① 根据电路的两种工作状态 uC U S (U 0 U S )e 稳态分量 t 全响应 t 0 U0 0 暂态分量 暂态分量 U0- US uC / V ② 根据激励与响应的因果关系 uC U 0e t t U S (1 e ) 零输入响应 t/s 全响应 物理概念清晰 uC / V 稳态分量 零状态响应 t 0 全响应 US U0 零状态响应 全响应 零输入响应 便于叠加计算 0 t/s 例1 t = 0 时 , 开关K打开,求 t > 0 后的 iL 。 8 解: RL 电路全响应问题 i L (0 ) i L (0 ) 24 6A 4 L 0.6 1 s R 12 20 4 + K ( t 0) 24V _ 零输入响应 i L 6e 20 t A 零状态响应 i L 全响应 i L i L i L 6e 20 t 2(1 e 20 t ) 2 4e 20 t A 24 (1 e 20 t ) 2(1 e 20 t ) A 12 + iL uL 0.6H _ t = 0 时 , 开关K闭合,求 t > 0 后的 iC,uC 以及电流源两端的电 压 u ,已知 uC(0+) = 1V。 例2 解: RC电路全响应问题 稳态分量 uC () 10 1 11V 1 1 + RC (1 1) 1 2 s 10V _ 全响应 uC 11 Ke 0.5 tV K uC (0 ) uC () 10 0.5 t u 11 10 e V 故 C duC iC C 5e 0.5 t A dt u 1 1 1 iC uC 12 5e 0.5 tV 1F 1 K + 1A u _C + u _ 例3 t = 0 时 , 开关闭合,求换路后的uC(t) 。 解: uC (0 ) uC (0 ) 2V 2 uC ( ) (2 // 1) 1 V 3 2 RC 3 2s 3 uC ( t ) uC () [uC (0 ) uC ()]e 2 2 (2 )e 0.5 t 3 3 2 4 e 0.5 t t 0 3 3 2 1A 3F + uC _ t 1 小结 状态变量 uC iL 零输入响应 uC U 0e t RC U 0 RL t iL e R I 0e R t L 零状态响应 uC U S (1 e 全响应 t RC ) uC U S (U 0 U S )e t RC R R t t US U U U S iL (1 e L ) i L S 0 e L R R R I S (1 e R t L ) I S ( I 0 I S )e R t L 5. Superposition and linearity Provided one properly accounts for initial conditions, superposition still apply when capacitors and inductors are added to the circuit. duC for a capacitor iC C dt duC 1 duC 2 i C , i C suppose C 1 C2 dt dt and uC uC 1 uC 2 d duC 1 duC 2 iC 1 iC 2 iC C ( uC 1 uC 2 ) C C dt dt dt By the same arguments, the current due to the input excitation uC a1uC 1 a2 uC 2 is iC a1iC 1 a2 iC 2 . One the other hand, suppose uC 1 1 C t i ( )d , uC 2 C 1 1 C t i ( )d and iC a1iC 1 a2 iC 2 C 2 1 t uC [a1iC 1 ( ) a2 iC 2 ( )]d C 1 t 1 t a1iC 1 ( )d a2 iC 2 ( )d a1uC 1 a2 uC 2 C C Thus linearity and, hence, superposition hold. Arguments analogous to the preceding imply that a relaxed inductor satisfies a linear relationship, and thus superposition is valid, whether the inductor is excited by currents or by voltages. For a general linear circuit, one can view each initial condition as being set up by an input which shuts off the moment the initial condition is established. This mean that when using superposition on a circuit, one first looks at the effect of each independent source on a circuit having no initial conditions. Then one sets all independent sources to zero and computes the response due to each initial condition with all other initial conditions set to zero. The sum of all the responses to each of the independent sources plus the individual initial condition responses yields the complete circuit response, by the principle of superposition. Example 8.8. The linear circuit of the figure has two source excitations applied at t=0, as indicated by the presence of the step functions. The initial condition on the inductor current is iL(0-)=-1A. Determine the response iL(t) for t≥0 using u _ superposition. + R1 + U S 10u(t )V _ R1 10 L 2H iL R2 20 3 I S 2u( t ) A Solution Step 1. Compute the part of the circuit response due only to the initial condition, with all independent sources set to zero. iL 2H 4 i L ( t ) e Rth t L i L (0 ) e 2 t u( t ) A + + U S 10u(t )V _ uR1 _ R1 10 L 2H iL R2 20 3 I S 2u( t ) A Step 2. Determine the response due only to US=10u(t)V. US 1 A, Rth R1 // R2 4 R1 R th t i L ( t ) i L () [i L (0 ) i L ()]e L u( t ) (1 e 2 t )u( t ) A i L (0 ) 0 A, iL () Step 3. Compute the response due only to the current source IS=2u(t)A. i L(0 ) 0 A, iL() 2 A, Rth R1 // R2 4 i L( t ) i L() [i L(0 ) i L()]e Rth t L u( t ) 2(1 e 2 t )u( t ) A Step 4. Apply the principle of superposition. iL (t ) iL (t ) iL (t ) iL(t ) e 2 t u(t ) (1 e 2 t )u(t ) 2(1 e 2 t )u(t ) A due to initial condition due to source US (3 4e 2 t )u( t ) A due to source IS The question still remains as to why the superposition principle holds an advantage over the Thevenin equivalent method. Question 1. What is the new response if the initial condition is changed to iL(0-)=5A? Question 2. What is the new response if the voltage source US is changed to 5u(t)V, with all other parameters held constant at their original values? Question 3. What is the new response if the initial condition is changed to 5A, the voltage source US is changed to 5u(t)V, and the current source IS is changed to 8u(t)A? This allows one to explore easily a circuit’s behavior over a wide range of excitations and initial conditions. 6. Response classifications Zero-input response The zero-input response of a circuit is the response to the initial conditions when the input is set to zero. Zero-state response The zero-state response of a circuit is the response to a specified input signal or set of input signals given that the initial conditions are all set to zero. Complete response By linearity, the sum of the zero-input and zero-state responses is the complete response of the circuit. Natural response The natural response is that portion of the complete response that has the same exponents as the zeroinput response. Forced response The forced response is that portion of the complete response that has the same exponents as the input excitation. 7. Further points of analysis and theory Not only a capacitor voltage or an inductor current, it turns that any voltage or current in an RC or RL first-order linear circuit with constant input has the form x( t ) x( ) [ x( t 0 ) x()]e t t0 by linearity, any voltage or current in the circuit has the form x(t ) K1 K 2 uC (t ) and uC ( t ) K 3 K 4e which implies that t t0 x( t ) K 5 K 6e t t0 Example 8.9. For the circuit of the figure, let uin(t)=-18u(-t )+9u(t)V. Find iin(t) for t>0. Solution Step 1. Compute iin(0+). iin ( t ) 6k + + 3 uC (0 ) uC (0 ) ( 18) 6V uin ( t ) _ 9 9 6 3 iin (0 ) mA 6 3 // 2 2 3 // 6 3 6 3k Step 2. Computeτand iin(∞). RthC 2s iin () 9 mA 1mA 63 0.5mA uC _ 0+ circuit 1.75mA Rth 2 3 // 6 4k 2k iC iin ( t ) 6k + uin ( t ) _ 2k iC + 3k 6V _ Step 3. Set forth the complete response iin(t). iin ( t ) iin () [iin (0 ) iin ()]e t 1 0.75e 0.5 t mA Exercise. In example 7, find iC(0-), iC(0+), and iC(t) for t>0. iin ( t ) 6k 2k iC + + uin ( t ) _ 3k 0.5mA uC _ 例1 t = 0 时开关闭合,求 t > 0 后 iL,i1 和 i2 。 10 解法1:i L (0 ) i L (0 ) 2A i1 5 10 20 + i L () 6A 10V 5 5 _ L 0.6 0.2 s R 5 // 5 10 20 10 i1 (0 ) 1 0 A i1 ( ) 2A 10 5 20 10 20 i2 (0 ) 1 2 A i2 ( ) 4 A i1 10 5 + 10V i L ( t ) 6 (2 6)e 5 t 6 4e 5 t t 0 _ i1 ( t ) 2 (0 2)e 5 t 2 2e 5 t A t 0 i2 ( t ) 4 (2 4)e 5 t 4 2e 5 t A t 0 5 5 i2 iL + 0.5H 20V _ 0电路 5 5 i2 + 2A 20V _ 例1 t = 0 时开关闭合,求 t > 0 后 iL,i1 和 i2 。 5 10 解法2: i L (0 ) i L (0 ) 2A 5 10 20 i L () 6A 5 5 L 0.6 0.2 s R 5 // 5 iL ( t ) iL ( ) [iL (0 ) i L ()]e i1 + 5 iL 10V _ t i2 + 0.5H 20V _ 6 (2 6)e 5 t 6 4e 5 t t 0 diL uL (t ) L 0.5 (4e 5 t ) (5) 10e 5 tV t 0 dt 10 uL 2 2e 5 t A t 0 i1 ( t ) 5 20 uL i1 (t ) 4 2e 5 t A t 0 5 例2 t = 0 时开关由1→2,求换路后的uC(t) 。 4 2 解: i1 uC (0 ) uC (0 ) 8V uC () 4i1 2i1 6i1 12V 2A 4 RC 10 0.1 1s uC ( t ) uC () [uC (0 ) uC ()]e 12 (8 12)e 12 20e V t + 0.1F _ 8V 2i _ + 1 t 1 1 + t 戴维宁等效 10 t 0 + 12V _ + 0.1F uC _ uC _ 例3 t = 0 时 , 开关闭合,求换路后的i(t) 。 1H 解: uC (0 ) uC (0 ) 10V uC () 0 + 10V 1 RC 2 0.25 0.5s 5 i 2 _ 0.25H i L (0 ) i L (0 ) 0 iL () 10 / 5 2 A L 1 2 0.2 s R 5 t uC ( t ) uC () [uC (0 ) uC ()]e 10e 2 tV iL ( t ) iL () [iL (0 ) iL ()]e t t 0 2(1 e 5 t ) A t 0 uC ( t ) i (t ) iL (t ) 2(1 e 5 t ) 5e 2 t A t 0 2 例4 已知:电感无初始储能, t = 0 时闭合K1 ,t =0.2s时闭合K2 , 求两次换路后的电感电流。 解: 0 t 0.2s K1 ( t 0) + 10V _ 2 i i (0 ) i (0 ) 0 A 10 1H i () 2A 5 L 1 0.2 s 1 3 R 5 K 2 ( t 0.2 s ) i (t ) 2 2e 5 t A 0 t 0.2 t 0.2s i (0.2 ) i (0.2 ) 2 2e 50.2 1.26 A 10 i () 5A 2 L 1 2 0.5 s R 2 i (t ) 5 3.74e 2( t 0.2) A t 0.2