Download ch5_DesignAndApplica..

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
LEARNING BY APPLICATION
FIND THE THEVENIN EQUIVALENT FOR THE UNKNOWN
ELEMENT USING A RESISTOR AND A VOLTMETER

2.4V
EQUIVALENT FOR
ELEMENT+SOURCE 
VTH  2.4V
(measured
in open
circuit)
 1.6V 
2.4V
RTH  2k
0.8mA
MEASURED ACROSS
TEST RESISTOR
http://www.wiley.com/college/irwin/0470128690/animations/swf/5-23.swf
DESIGN EXAMPLE
Implement the fine/coarse adjustment
VTUNE
Possible Circuit
1
1
   VCOARSE    VFINE
2
 20 
• Sum of terms suggests superposition
• gains less than one suggest voltage divider
Circuits for
superposition
R || R1
1
VTUNE _ C
R || R2
1 VTUNE _ F 



( R || R1 )  R2 20
VCOARSE ( R || R2 )  R1 2 VFINE
INFINITE POSSIBLE SOLUTIONS.
USE OTHER CRITERIA PLUS
ENGINEERING JUDGMENT
e. g ., R  1k  (reasonable choice)
 R1  900, R2  9k 
DESIGN EQUATIONS
2 EQS AND THREE UNKNOWNS!
DESIGN EXAMPLE
DESIGN AN ATTENUATOR PAD
DESIGN EQUATIONS
RTH _ IN
RTH _ IN  RTH _ OUT  50
VOUT
1

VS
10
 R2   R1 || ( R2  RL )  50
RTH _ OUT  R2   R1 || ( R2  RS )  50
1
RL  RS  Dependent Eqs!
VTH 
VOUT 
R1
V
R1  R2  RS S
RL
1
VTH  VTH
RL  RTH _ OUT
2
 VOUT
R1
1

VS
2 R1  R2  RS

R1
1
1

2 R1  R2  RL 10
2
SOLVING THE EQUATIONS YIELDS
R1  20.83 , R2  33.33
Analysis of Solution
• requires special, high accuracy resistors
• small resistance may imply large power dissipated
• may require large power rating to avoid heating
DESIGN EXAMPLE
DESIGN A CIRCUIT TO REALIZE THE EQUATION
VO  3VS  2000 I S
[VO in Volts , I S in mA]
ANALYSIS OF THE REQUIREMENTS
• sum of voltage and current
• gains larger than one
• inverting
ANALYSIS OF PROPOSED CIRCUIT
VA  0 (infinite gain)
Proposed solution
VO
VS
@ A: 
 IS 
0
R2
R1
OTHER METHODS
• superposition
• Norton (see book)
R2
VO   R2 I S  VS
R1
 R2  2000
ANALYSIS OF SOLUTION
• 2k is standard resistor
• 667 is 1k||2k
• uses standard components!
 R2  3 R1  R1  667
DESIGN EXAMPLE
USE A SERIES RESISTOR WITH EACH FAN TO
SENSE CURRENT
PROVIDE AN INDICATION OF TOTAL AIRFLOW
VF  100 I F FCFM  200 I F
CONSTRAINTS
• VOLTAGE DROP ON SENSING RESISTOR CANNOT
EXCEED 2% OF NOMINAL 24V FAN VOLTAGE
• 1V = 50CFM FOR THE INDICATOR
Design of Indicator
Adder
inverter
Design of sensor
24  0.48
R
IF 
 235.2mA V
100
R
0.48  RSENSE I F
VO  4 VSENSE 
R3
RSENSE  2.04
R
 1.96  2
2
R
P  I R  0.11W
SENSE
4
SENSE
F
SENSE
3
IF 
SENSE
RSENSE
F
 0.0102 FCFM
200 CFM
Inverter
R5  R6
R4
R
0.0102FCFM || FCFM  50  VO  1  1  4 0.0102  50
R3
R3
DESIGN EQUATIONS!
LEARNING BY DESIGN
CURRENT OVERLOAD SENSOR
VS
Vbatt  12V
50
v  VS
51
KCL@v  :
VS  v VA  v

0
1k
50k
VS
v  v
v
Vbatt
2
THIS POINT MUST GO
HIGH WHEN CURRENT
EXCEEDS 9A
VA  50(VS  VS )  50Vsense 50  Rsense  9( A)  6V  Rsense  0.0133
DESIGN REQUIREMENT
I batt  9 A  VA  6V
LEARNING BY DESIGN
VS
DESIGN EQUATIONS
 R 
R1
R
9
0  1  2  (0.5)  2 Vref
R
R1
1
 R1 

5
 R2 
Vref  V
R2
5  1   (1.0)  Vref
9
R
R

1
1
CHOOSE R1  10k
DESIGN REQUIREMENT
INPUT
OUTOUT
0.5  VS  1.0V
0  VO  5V
DETERMINE Vref , R1, R2
KCL @ v-
GENERATES Vref AND ISOLATES
VOLTAGE DIVIDER
VO  VS Vref  VS

0
R2
R1
 R 
R
VO  1  2 VS  2 Vref
R1
 R1 
Analyzing circuit using superposition
Related documents