Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Sinusoids and Phasors Instructor: Chia-Ming Tsai Electronics Engineering National Chiao Tung University Hsinchu, Taiwan, R.O.C. Contents • • • • • • • • Introduction Sinusoids Phasors Phasor Relationships for Circuit Elements Impedance and Admittance Kirchhoff’s Laws in the Frequency Domain Impedance Combinations Applications Introduction • AC is more efficient and economical to transmit power over long distance. • A sinusoid is a signal that has the form of the sine or cosine function. • Circuits driven by sinusoidal current (ac) or voltage sources are called ac circuits. • Why sinusoid is important in circuit analysis? – Nature itself is characteristically sinusoidal. – A sinusoidal signal is easy to generate and transmit. – Easy to handle mathematically Sinusoids Consider t he sinusoidal voltage v(t ) Vm sin t where Vm the amplitude of the sinusoid the angular frequency (radians/s ) ωt the argument of the sinusoid The sinusoid repeats itself every T seconds. 2 ωT 2 T (T:period ) ω v(t nT ) v(t ) Proof : v(t nT ) Vm sin (t nT ) 2 ) ω Vm sin( t 2n ) Vm sin (t n v(t ) Sinusoids (Cont’d) • A period function is one that satisfies f(t) = f(t+nT), for all t and for all integers n. – The period T is the number of seconds per cycle – The cyclic frequency f = 1/T is the number of cycles per second 1 f T 2f where : radians per second (rad/s) f : hertz (Hz) A more general expression is given as v(t ) Vm sin( t ) where (t ) : Argument : Phase Sinusoids (Cont’d) We say that We say that v2 leads v1 by v1 lags v2 by v1 and v2 are in phase , if 0 v1 and v2 are out of phase, if 0 Sinusoids (Cont’d) • To compare sinusoids – Use the trigonometric identities – Use the graphical approach Trigonomet ric identities : sin( A B) sin A cos B cos A sin B cos( A B) cos A cos B sin A sin B sin( t 180) sin t cos(t 180) cos t sin( t 90) cos t cos(t 90) sin t The Graphical Approach A cos t B sin t C cos(t ) C A2 B 2 where 1 B tan A 3 cos t 4 sin t 5 cos(t 53.1) Phasors • Sinusoids are easily expressed by using phasors • A phasor is a complex number that represents the amplitude and the phase of a sinusoid. • Phasors provide a simple means of analyzing linear circuits excited by sinusoidal sources. Considerin g a complex number z , their are three ways to represent it. x jy : Rectangula r form r : the magnitude of z z r : Polar form , where : the phase of z re j : Exponentia l form Phasors (Cont’d) x jy : Rectangula r form z r : Polar form re j : Exponentia l form Given x and y, we can get r and as y r x y , tan x If we know r and , we can obtain x and y as 2 2 1 x r cos , y r sin z x jy r r (cos j sin ) Important Mathematical Properties z x jy r z1 x1 jy1 r11 z2 x2 jy2 r22 Addition : z1 z 2 ( x1 x2 ) j ( y1 y2 ) Substracti on : z1 z 2 ( x1 x2 ) j ( y1 y2 ) Multiplica tion : z1 z 2 r1r2 (1 2 ) Division : z1 r1 (1 2 ) z 2 r2 Reciprocal : Square Root : 1 1 z r z r 2 Complex Conjugate : z x jy r Phasor Representation e j cos j sin cos Re( e j ) j sin Im( e ) v(t ) Vm cos(t ) Re(Vm e j (t ) ) Re(Vm e j e jt ) v(t ) Re( Ve jt ) V Vm e j Vm V is the phasor representa tion of the sinusoid v(t ). Phasor Representation (Cont’d) Phasor Diagram V Vm I I m Sinusoid-Phasor Transformation v(t ) Vm cos(t ) V Vm dv(t ) Vm sin( t ) Vm cos(t 90) dt Re(Vm e jt e j e j 90 ) Re e j 90 (Vm e j )e jt Re( jVe jt ) dv jV dt Similarly, V vdt j Phasor Relationships for Resistor If the current th rough the resistor is i I m cos(t ) I I m By Ohm' s law, v iR RI m cos(t ) V RI m RI Time domain Phasor domain Phasor diagram Phasor Relationships for Inductor If the current th rough the inductor is i I m cos(t ) I I m The voltage across the inductor is di v L LI m cos(t 90) V jLI dt Time domain Phasor domain Phasor diagram Phasor Relationships for Capacitor If the voltage across the capacitor is v Vm cos(t ) V Vm The current th rough the capacitor is dv iC CVm cos(t 90) I jCV dt Time domain Phasor domain Phasor diagram Impedance and Admittance V 1 Impedance : Z () , Admittance : Y (S) I Z V is the phasor vol tage whe re I is the phasor current Element Impedance R ZR L Z j L C 1 Z j C Admittance 1 Y R 1 Y j C Y jL Impedance and Admittance (Cont’d) Z j L 0 1 Z jC 0 Impedance and Admittance (Cont’d) Z R jX R : resistance where X : reactance The impedance is said to be inductive when X is positive capacitive when X is negative Z R jX Z Z R2 X 2 where 1 X tan R R Z cos and X Z sin If X is positive, then Z R jX : inductive or lagging since current lags voltage Z R jX : capacitive or leading since current leads voltage Impedance and Admittance (Cont’d) 1 Y G jB Z G : conductanc e where B : susceptanc e 1 1 R jX R jX G jB 2 R jX R jX R jX R X 2 R G R 2 X 2 X B 2 R X2 KVL and KCL in the Phasor Domain Vm1e j1 Vm 2 e j 2 jt e 0 Re j Vmne n For KVL, let v1 , v2 ,..., vn , be the voltages around a closed loop. v1 v2 vn 0 Let VK Vmk e j k , then In the sinusoidal steady state, each volta ge may be written in cosine form. Vm1 cos(t 1 ) Vm 2 cos(t 2 ) Vmn cos(t n ) 0 This can be written as j1 Re(Vm1e e j t j 2 ) Re(Vm 2 e e j t Re(Vmne j n e jt ) 0 ) Re V1 V2 Vn e jt 0 Since e jt 0 for any t , V1 V2 Vn 0 KVL holds for phasor!!! In a similar manner, KCL holds for phasor. I1 I 2 I n 0 Series-Connected Impedance Applying KVL gives V V1 V2 Vn I(Z1 Z 2 Z n ) V Z eq Z1 Z 2 Z n I Zk V I , Vk V Z eq Z eq Parallel-Connected Impedance Applying KCL gives I I1 I 2 I n I Yeq Y1 Y2 Yn V 1 1 1 Yk I V( ) V , Ik I Z1 Z 2 Zn Yeq Yeq Y- Transformations Y Δ Conversion: Z1Z 2 Z 2 Z 3 Z 3Z1 Za Z1 Δ Y Conversion: Zb Zc Z1 Z a Zb Zc Z1Z 2 Z 2 Z 3 Z 3Z1 Zb Z2 ZcZa Z2 Z a Zb Zc Z1Z 2 Z 2 Z 3 Z 3Z1 Zc Z3 Z a Zb Z3 Z a Zb Zc Example 1 Find Zin for 50 rad/s. Z in Z 2 mF Z 3 10mF || Z8 0.2 H 1 1 || 8 j 0.2 3 j 2 m j 10m j10 3 j 2 || 8 j10 3 j 28 j10 j10 3.22 j11.07 11 j8 Example 2 Find vo (t). Sol: vs 20 cos( 4t 15) Vs 20 15 , 4 j 20 || j 25 Vo Vs 60 j 20 || j 25 j100 20 15 60 j100 0.857530.9620 15 17.1515.96 vo (t ) 17.15 cos( 4t 15.96) Example 3 Sol: j 4 ( 2 j 4) Z an j4 2 j4 8 1.6 j 0.8 j 4(8) Z bn j 3. 2 10 8(2 j 4) Z cn 1.6 j 3.2 10 Z 12 Z an Z bn j3 || Z cn j 6 8 13.6 j1 13.644.204 V 500 I Z 13.644.204 3.666 4.204 Find I. -Y transformation Applications: Phase Shifters Vo R 1 R jC jRC Vi Vi 1 jRC RC 1 1 tan Vi 2 2 2 RC 1 R C Leading output Phase Shifters (Cont’d) 1 1 jC Vo Vi Vi 1 1 jRC R jC 1 1 tan RC Vi 2 2 2 1 R C Lagging output Example Design an RC circuit to provide a phase of 90 leading.. Sol: 20(20 j 20) Z 20 || (20 j 20) 12 j 4 40 j 20 2 Z 12 j 4 V1 Vi Vi 45 Vi Z j 20 12 j 24 3 2 2 2 20 1 Vo V1 45 V1 45 45 Vi 90 20 j 20 3 2 2 3 Applications: AC Bridges Balanced condition : V1 V2 Zx Z2 V1 Vs V2 Vs Z1 Z 2 Z3 Z x Zx Z3 Z2 Z 2 Z 3 Z1Z x Z x Z2 Z1 Z 2 Z 3 Z x Z1 AC Bridges (Cont’d) Bridge for measuring L Bridge for measuring C R1 Lx Ls R2 R1 Cx Cs R2 Summary • Transformation between sinusoid and phasor is given as v(t ) Vm cos(t ) V Vm • Impedance Z for R, L, and C are given as 1 Z R R, Z L jL, ZC jC • Basic circuit laws apply to ac circuits in the same manner as they do for dc circuits.