Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Ch 10 MOSFETs and MOS Digital Circuits * Examine MOSFET use in inverters * Inverter = two transistors in series Input to gate of driver (at least) Second transistor acts as load Output off connection between transistors * NMOS Inverters Enhancement driver, resistor load Enhancement driver and load Enhancement driver, depletion load * CMOS Inverter N channel driver, P channel load Load Driver Vo Vi ECES 352 Winter 2007 * Analyze to find inverter performance: * Voltage transfer characteristic * Noise margins * Power dissipation * Switching speed Ch 10 MOS Digital 1 MOSFETs and MOS Digital Circuits * Inverters combined in series and parallel to form digital circuits such as AND’s, NAND’s, OR’s, NOR’s, flipflops, etc. * Understanding inverter operation is basic to understanding and describing digital circuit operation * Also important in modifying their design to enhance their performance, e.g. speed, power dissipation, susceptibility to noise, and fan-out capability ECES 352 Winter 2007 Ch 10 MOS Digital 2 N-Channel Enhancement MOSFET * Positive voltage on gate attracts electrons to surface to form “induced channel of electrons”. * Channel forms path for electron flow between source and drain. * Without channel, have back-to-back diodes in series between source and drain so negligibly small current ECES 352 Winter 2007 Ch 10 MOS Digital 3 N-Channel Enhancement MOSFET * Basics of device operation iDS Saturation mode operation (large VDS) VTh = threshold voltage No channel of electrons for vGS < VTh No current for vGS < VTh VTh > 0 for enhancement mode n-channel MOSFET iDS Channel formation for vGS > VTh Increasing vGS Increasing vGS VTh ECES 352 Winter 2007 vDS vGS Ch 10 MOS Digital 4 N-Channel Enhancement MOSFET iDS vDS sat = v GS – VTh Constant vGS curve ECES 352 Winter 2007 Ch 10 MOS Digital vDS 5 N-Channel Enhancement MOSFET * Cutoff region (vGS < VTh) iDS iD 0 * Triode region (vDS < vDSsat) 2 i K [ 2 v V v v ] D GS Th DS DS * Triode-saturation boundary at vDS = vDSsat = vGS - VTh OR where vGS - vDS = VTh * Saturation region (vDS > vDSsat) vDS sat = v GS – VTh vGS 2 iDK V Th where K 1 W nCox 2 L Cox vDS ox tox n electron mobility in thechannel in cm2 /V sec vn electronelocity v E electric fieldstrength W widthof thechannel (perpendic ular to current flow) L lengthof thechannel (alongthecurrent flow) ECES 352 Winter 2007 Ch 10 MOS Digital 6 N-Channel Depletion MOSFET * Basics of device operation N-type channel Saturation mode operation iDS VTh < 0 for depletion mode n-channel MOSFET VTh = threshold voltage Channel exists even when no bias is applied to the gate, i.e for vGS = 0. Drain current can flow for vGS = 0 and for any vGS > VTh. No channel of electrons for vGS < VTh No drain current for vGS < VTh vGS VTh ECES 352 Winter 2007 Ch 10 MOS Digital 7 N-Channel Depletion MOSFET iDS * Cutoff region (vGS < VTh) iD 0 * Triode region (vDS < vDSsat) 2 i K [ 2 v V v v ] D GS Th DS DS * Triode-saturation boundary at vDS = vDSsat = vGS - VTh OR where vGS - vDS = VTh * Saturation region (vDS > vDSsat) vDS sat = v GS – VTh vGS 2 iDK V Th vGS= 0 1 W K nCox 2 L Cutoff vDS * Only difference from enhancement mode device is that the gate voltage may be negative. But vGS must still be larger than the threshold voltage for the device to be on! ECES 352 Winter 2007 Cox ox tox 2 n electron mobility in the channel incm /Vsec v electron elocity v n E electric field strength Wwidth ofthe channel (perpendic ular current to flow Llength ofthe channel (along the current flow) Ch 10 MOS Digital 8 N-Channel Enhancement vs Depletion MOSFET Enhancement MOSFET (VTh > 0 ) * Cutoff region (vGS < VTh) iD 0 iDS * Triode region (vDS < vDSsat) 2 i K [ 2 v V v v ] D GS Th DS DS vDS * Triode-saturation boundary at vDS = vDSsat = vGS - VThOR where vGS - vDS = VTh * Saturation region (vDS > vDSsat) 2 vGS iDK V Th vGS < VTh iDS Depletion MOSFET (VTh < 0 ) 1 W K nCox 2 L Cox ox tox 2 n electron mobility in the channel incm /Vsec v electron elocity v n E electric field strength Wwidth ofthe channel (perpendic ular current to flow Llength ofthe channel (along the current flow) vGS = 0 vDS ECES 352 Winter 2007 Ch 10 MOS Digital 9 NMOS Inverter (E-MOSFET + Resistor Load) * Analyze to find inverter performance: voltage transfer characteristic, noise margins, power dissipation and switching speed * Transistor characteristics (driver) VDD5 V RD 2K + + vi _ vo _ VTh 1.0 V (enhanceme nt mode ) Channel width W 5m, Channel length L 1m Electron mobility n 700 cm 2 / V sec Gate oxide thicknes s tox 20 nm 2 x10 6 cm Gate oxide capacitanc e Cox ox / tox Cox (3.9 x8.85 x10 14 F / cm ) /( 2 x10 6 cm ) 1.77 x10 7 F / cm 2 1 W nCox 2 L 1 5 m (700 cm 2 / V sec)(1.77 x10 7 F / cm 2 )( ) 2 1m K 0.3 mA / V 2 ECES 352 Winter 2007 Ch 10 MOS Digital 10 NMOS Inverter - Load Line * Device operation in inverter VDD5 V V 1.0V Th RD 2K K0.3mA /V2 Load line comes from connections of transistor in the circuit v V R v o DD Di D DSor V v iD DD DS R R D D + vo = v DS _ iDS VDD/RD =5V/2K =2.5 mA D Increasing vGS Load line C . A vDS For a given vGS, e.g. 3V (=VTh+2V), transistor’s operating point is where load line crosses vGS = 3V transistor characteristic. Transistor must operate on load line as gate voltage changes. At points A, the transistor is in cutoff mode (small vGS). Between points A and C (larger vGS), transistor is in saturation mode. Between points C and D (even larger vGS), transistor is in triode mode. VDD ECES 352 Winter 2007 Ch 10 MOS Digital 11 NMOS Inverter (E-MOSFET + Resistor Load) VDD5 V V 1.0V Th RD 2K K0.3mA /V2 * Voltage transfer characteristic Vo versus Vi * Region I (A to B) 0 < Vi < VTh iD = 0 since transistor is off, i.e. in cutoff. + + vi vo _ _ vo iDS 5V A B I A to B . vDS 0 0 ECES 352 Winter 2007 VTh=1V Ch 10 MOS Digital 5V 12 vi NMOS Inverter (E-MOSFET + Resistor Load) * Region II (B to C) VDD5 V V 1.0V Th RD 2K K0.3mA /V2 + + vi Vi > VTh and iD > 0 since transistor is on. iD is increasing as Vi = vGS increases Transistor is operating in saturation mode since vDS > vDSsat vGSV 20.3mA v1 2iR iDK V Th 2 i V mA 2 v V R iR5 V2 K 0 .3 2v 1 V o DD D i V vo _ _ 2 v 1 V i 5 V0 .6 V vo iDS vDSsat 5V A B I C . A to B C vDS 0 0 ECES 352 Winter 2007 II VTh =1V Ch 10 MOS Digital 5V 13 vi NMOS Inverter (E-MOSFET + Resistor Load) * VDD5 V V 1.0V Th RD 2K K0.3mA /V vo vDSvDSsat vGSVThvi VTh + + vi * 2 Where is point C and what are the corresponding values of Vi and Vo? At C, transistor is operating at the edge of the saturation mode where vo _ _ Socombining with Load Line equation vo VDDRDiR VDDKvi VTh RD weget 2 vi VThVDDKvi VTh RD 2 Solving forvi we get -1 14KR VDD 1 14(0.3mA /V)2K(5V) D v i(at C) 2KR 2(0.3mA /V)2K D 13.6 2.2V or 3.8V(not possible ) and sovi(at C) 2.2V 1.2 Then v0(at C) vi(at C) VTh2.2V1.0V1.2V iDS vo A 5V C . ECES 352 Winter 2007 B I A to B vDS 1.2V 0 II C 0 VTh 2.2V Ch 10 MOS Digital 14 5V vi NMOS Inverter (E-MOSFET + Resistor Load) V 1.0V Th VDD5 V * K0.3mA /V2 RD 2K 2 vDSvDS vovo2] and iDK [2vGSV ]K [2vi V Th Th V v iDiR DD o socombining and rearrangin g we get R D + + vi Region III (C to D) Vi > VTh and iD > 0 since transistor is still on. Transistor is operating in triode mode so vo _ 2 1VDD0 Kv vo2Kvi V o Th R D R D _ 1/2 2 1 4KV DD 1 2 K v V i Th 2 K v V i Th R R D D R D vo 2K 2K iDS vo B A 5V D I C II A to B . vDS C 1.2V 0.95V 0 ECES 352 Winter 2007 III VTh Ch 10 MOS Digital At D, vi = 5V and vo= 0.95V or 8.7V (not possible). D 2.2V 15 5V vi Noise Margins for NMOS Inverter (E-MOSFET + Resistor Load) * Noise margin for low state high high low vo VOH = 5V NML= VIL - VOL = 1.0 V- 0.95 V = 0.05 V VOL= 0.95V Vi =VOL = 0.95V VIL=VTh = 1.0V 5V vi Input signal size with noise that causes problems.. Normal low input signal size without noise. ECES 352 Winter 2007 Ch 10 MOS Digital Measures degree of inverter sensitivity to noise for the low state, i.e. how large an input noise signal causes problems at output. Assumes identical inverter providing input signal Noise Margin = NML = VIL - VOL where VOL = output voltage when input set to VOH VIL = maximum input voltage recognized as a low input For this inverter design, NML is very low (0.05V) ! Can change by changing R or VTh or transistor’s K. 16 Noise Margins for NMOS Inverter (E-MOSFET + Resistor Load) * Noise margin for high state low low high vo VOH = 5V NMH = VOH - VIH Slope = -1 VOL= 0.95V 5V Input signal size with noise that causes problems. V IH Normal high input signal size without noise. ECES 352 Winter 2007 vi Measures degree of inverter sensitivity to noise for the high state, i.e. how large a negative input noise signal causes problems at the output. Assumes identical inverter providing input signal Noise Margin = NMH = VOH - VIH where VOH = output high voltage when input set to VOL VIH = minimum input voltage recognized as a high input Can change by changing R or VTh or transistor’s K. Vi=VOH Ch 10 MOS Digital How do we find VIH? 17 Noise Margins for NMOS Inverter (E-MOSFET + Resistor Load) * Noise margin for high state low low high vo VOH = 5V NMH = VOH - VIH = 5 V- 1.83 V = 3.17 V Slope = -1 Noise Margin = NMH = VOH - VIH where VOH = output high voltage when input set to VOL VIH = minimum input voltage recognized as a high input Can find VIH by using expression derived for region II vo VDDRDiR VDDRDKvi VTh2 dv 0 2RDKvi VTh1 so dv i 1 vi VIH VTh 2RDK VOL= 0.95V 1 1V 1.83 V 2(2K)(0.3mA /V) C 2.2V 5V VIH II ECES 352 Winter 2007 III Vi=VOH vi This VIH is less than 2.2V where FET enters region III, so our guess that device at VIH is in region II is okay. Ch 10 MOS Digital 18 Noise Margins for NMOS Inverter (E-MOSFET + Resistor Load) * Alternate analysis for Noise margin for high state low low high Noise Margin = NMH = VOH - VIH Can find VIH by using expression derived for region III 2 vi VTh 1 VDD0 Kv o v o2K RD RD vo Ifwepick vo 1V, wegetforvi VOH = 5V 1 5 0.3(1)2 2(0.3)(vi 1) 0 2 2 sovi 4.5VVIH NMH = VOH - VIH = 5 V- 4.5 V = 0.5 V VO= 1.0 V C VOL= 0.95V 2.2V 5V VIH II ECES 352 Winter 2007 III vi The noise margin for the high state NMH now becomes smaller. NMH = VOH – VIH = 5 V- 4.5 V = 0.5 V This is smaller than the previously determined value, but is still a factor of ten larger than that for the low state NML = 0.05 V. VOH Ch 10 MOS Digital 19 Power Dissipation for NMOS Inverter (E-MOSFET + Resistor Load) * V 1.0V Th VDD5 V K0.3mA /V2 RD 2K * Input low, output high. Transistor is off, iD = 0. Power dissipation PH = 0 Input high (5 V), output low (0.95 V). vovDS (D )0.95 V 5V0.95 V iD 2.0mA 2K P (2.0mA )10 mW L5V + + vi vo _ * _ Average Static Power Dissipation P 10 mW 1 P P P 5 mW HL 2 2 iDS vo A B 5V D C . I A to B vDS III C 1.2V 0.95V 0 ECES 352 Winter 2007 II VTh Ch 10 MOS Digital D 2.2V 20 5V vi Propagation Delays and Switching Times for NMOS Inverters + + vi _ vo _ vi t vo ECES 352 Winter 2007 * Previously considered static characteristics of inverters, e.g. Voltage transfer characteristic. * Switching performance is also of interest. * Finite switching times are due to the capacitance load on the output and RC charging and discharging times. * Capacitance load comes from: 1) gate capacitance of subsequent inverters to which the output is connected and 2) capacitance of interconnect wires to inputs of other gates. * Propagation delays tPHL = output high to low tPLH = output low to high tP = (1/2)(tPHL+ tPLH) ) defines the speed of the inverter. t Ch 10 MOS Digital 21 Propagation Delays and Switching Times for NMOS Inverters Load Resistor iR + + vi=VOL _ RD 2K iC vo iD= 0 _ C * Output goes from Low to High Drive transistor turns off Load resistor provides current to charge up C. V v dv iC C o iR DD o dt RD Driver VTh1 1.0 V vot W1 5m, L1 1m K1 3.1x104 A V2 OL vo(t) VDDVDDVOLet/RDC vo tPLH = time to charge to the midpoint ½(VOH+VOL) = 1/2(5V + 0.95V) = 3.0V etPLH/RDC3.0V vo(tPLH )V V V DD DD OL For C10pF , VDD 3V VOL= 0.95V t dv 1 o VDDvo RDCdt V 0 tPLH t ECES 352 Winter 2007 V V DD OL tPLH R C ln D V 3.0 DD V V0.95 V 5 2K (10 pF ) ln 14nsec V3.0 V 5 Ch 10 MOS Digital 22 Propagation Delays and Switching Times for NMOS Inverters Load Resistor iR + + vi =VOH _ RD 2K iC C vo iD C VTh1 1.0 V K1 3.1x104 A V2 D RD 2 t dv 1 o dt V v i R R C o D D D 0 VOH DD vo(t)VDDiDRDVDDiDRDVOHet/RDC tPHL = time to discharge from VOH = VDD to (VOH+VOL) = 1/2(5V + 0.95V) = 3.0V V V et /RC3 v ( tPHL ) iD R iD R V .0 V o DD D DD D OH PHL D For C 10 pF , 3V VOL= 0.95V D vot 4A 2 3 . 1 x 10 ( 5 V 1 V ) 5 mA 2 V VDD R 2 2 2 i K v V K V V D i Th OH Th vo dt iD Kvi VTh KVOHVTh a constant ! W1 5m, L1 1m _ Driver * Output goes from High to Low Drive transistor turns on v = V i OH But load resistor continues to provide some current so V v dv i C o i i DD o i tPHL t ECES 352 Winter 2007 V idR V DD D OH tPHL R C ln D V idR 3 .0 V DD D 5 V 5 mA (2 K ) 5 V 2 K ( 10 pF )ln 4 .5n sec 5 V 5 mA ( 2 K ) 3 . 0 V Ch 10 MOS Digital 23 Propagation Delays Time for NMOS Inverters Load Resistor iR + vi=VOL _ vo iD= 0 _ C * Output goes from High to Low Drive transistor turns on to discharge the capacitor but Load resistor continues to provide current. V i R V DD d D OH t R C ln 4 . 5 n se PHL D V i R 3 . 0 V DD d D * Average Propagation Time tPD Driver VTh1 1.0 V W1 5m, L1 1m K1 3.1x104 vo A V2 vo VDD 3V VOL= 0.95V Output goes from Low to High Drive transistor turns off Load resistor provides current to charge up C. V V DD OL t R C ln 14 n sec PLH D V 3 . 0 V DD RD 2K iC + * VDD 3V tPLH ECES 352 Winter 2007 t VOL= 0.95V 1 1 t t t 4 . 5 n sec 14 n sec 10 n se PD PHL PLH 2 2 tPHL Ch 10 MOS Digital t 24 Propagation Delay for NMOS Inverter * Load iC iR Driver C iD Driver iDS R S vi = vGS = VOH =5 V T vo=VOL =0.95V P ECES 352 Winter 2007 vDS * Output goes from High (VOH = 5V) to Low (VOL = 0.95V) Driver transistor Q (starts from P R S T) At outset, Q is off (P), and vDS1 = vo = VOH = 5V, vi < VTh Driver turns on (P to R) when vGS is switched to VOH = 5 V. Driver initially is in saturation mode, then eventually moves into triode as capacitor discharges and vo (= vDS) decreases Q moves along constant vGS characteristic (R S T). Ends at (T) in triode region, where vDS = vo = VOL = 0.95V. Load resistor continuously providing current opposing discharge of capacitor. Output goes from Low to High Drive transistor is off (vi = 0.95 V < VTh = 1.0 V Transistor moves from T P as the output voltage vo rises to 5 V. vo =VOH = 5 V Ch 10 MOS Digital 25 Power-Delay Product for NMOS Inverter (E-MOSFET + Resistor Load) * Average Propagation Time tPD 1 1 t t t 4 . 5 n sec 14 n sec 10 n s PD PHL PLH 2 2 * Average Power Dissipation P C ( 0 10 mW ) 1 P P P 5 mW HL 2 2 * Power-Delay Product DP DP P t 5 mW ( 10 n sec 50 p PD * Resistor’s Undesirable Effects Wasted power for transistor on (output low) V V 5 V 0 . 95 V DD OL i 2 . 0 mA and P 10 mW R L R 2 K D Resistor provides limited charging current Maximum iR = 2 mA, but iR decreases as vo rises. iR slows down discharge of C when output goes low. ECES 352 Winter 2007 * Problems with this inverter: * Unequal noise margins! NML = 0.05 V, NMH = 3.17 V * Unequal transition times! τPHL = 4.5 nsec, τPLH = 14 nsec * Significant power dissipation! Can we improve on this inverter ? Ch 10 MOS Digital 26