Download L35_5342_Sp11

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Semiconductor Device Modeling
and Characterization – EE5342
Lecture 35 – Spring 2011
Professor Ronald L. Carter
[email protected]
http://www.uta.edu/ronc/
Flat-band parameters
for p-channel (n-subst)
n  substrate : VFB  ms
Q'ss

(no change)
C'Ox
Ox
C'Ox 
, Q'ss is the Ox/Si chg den
xOx
For a p  poly - Si gate,  s  m   s 
 NvNd   Eg
 Nd  
ms  Vt ln 2     Vt ln    0
ni   2q
 ni  
©rlc L35-29Apr2011 
Eg
q
Fully biased pchannel VT calc
n  substrate : VG, at threshold  VT
VT  VC  VFB  2n 
Q'd,max
C'Ox
 VFB  V
 Nd 
n  Vt ln   0, Q'd,max  qNdxd,max ,
 ni 
22 n  VC  VB 
xd,max 
, V  0
qNd
©rlc L35-29Apr2011
p-channel VT for
VC = VB = 0
Fig 10.21*
©rlc L35-29Apr2011
Ion implantation
©rlc L35-29Apr2011
“Dotted box” approx
©rlc L35-29Apr2011

 Nimpl dx  NaiXi
0

area under

area under dotted
dashed curve
'
Qss
curve
  Na
 qNaiXi
, F  NaiX
  Nd
di
di
Xi Xd, max
'
 Qss , before impl
To get Vt as desired, implant Nai Xi
qNaiXi
to get Vt  2.43, etc 
'
Cox
©rlc L35-29Apr2011
Mobilities
©rlc L35-29Apr2011
Differential charges
for low and high freq
high freq.
From Fig 10.27*
©rlc L35-29Apr2011
Ideal low-freq
C-V relationship
©rlc L35-29Apr2011
Fig 10.25*
Comparison of low
and high freq C-V
Fig 10.28*
©rlc L35-29Apr2011
Effect of Q’ss on
the C-V relationship
Fig 10.29*
©rlc L35-29Apr2011
n-channel enhancement
MOSFET in ohmic region
0< VT< VG
Channel
VS = 0
0< VD< VDS,sat
EOx,x> 0
n+
Depl Reg
©rlc L35-29Apr2011
e-e- e- e- e-
p-substrate
VB < 0
n+
Acceptors
Conductance of
inverted channel
•
•
•
•
•
Q’n = - C’Ox(VGC-VT)
n’s = C’Ox(VGC-VT)/q, (# inv elect/cm2)
The conductivity sn = (n’s/t) q mn
G = sn(Wt/L) = n’s q mn (W/L) = 1/R, so
I = V/R = dV/dR, dR = dL/(n’sqmnW)
L
VD
0
VS
I  dL   C'Ox VG  VC   VT  mnWdV
©rlc L35-29Apr2011
Basic I-V relation
for MOS channel


WmnCOx
2
ID 
2VG  VT VDS  VDS
, VDS  VG  VT
2L
At VDS  VDS,sat  VG  VT , Q'n y  L   0  Sat.
so let ID be given by ID VDS,sat ,
for VDS  VDS,sat  VG  VT so
ID  ID,sat
WmnCOx
VG  VT 2

2L
©rlc L35-29Apr2011
I-V relation for
n-MOS
(ohmic
reg)
m C'


W
2
ID 
2VG  VT VDS  VDS
. Note for
2
L
ohmic
VDS  VG  VT  VDS,sat ,
ID
non-physical
result is non - physical.
ID,sat
At VDS,sat , n's,y L  0
n Ox
assume that channel curr.
is const for VDS  VDS,sat
ID,sat
mnC'Ox W
VGS  VT 2

2
L
©rlc L35-29Apr2011
saturated
VDS,sat
VDS
Universal drain
characteristic
mnC'Ox W
ID1 
 1V 2
2
L
ID
VGS=VT+3V
9ID1
ohmic
4ID1
ID1
©rlc L35-29Apr2011
mnC'Ox W 2
ID,sat 
VDS
2
L
saturated, VDS>VGS-VT
VGS=VT+2V
VGS=VT+1V
VDS
Characterizing the
n-ch MOSFET
VD
ID
ID
D
G
S
slope 
B
 mnC'Ox W 


L
 2
VDS  VGS , VT  0
VDS  VGS  VT , so
mn C'Ox W
VGS  VT 2
ID,sat 
2
L
©rlc L35-29Apr2011
VT
VGS
Low field ohmic
characteristics


mnC'Ox W
2
ID 
2VGS  VT VDS  VDS
,
2
L
for ohmic region. Furthermore, let
VDS  VG  VT , so that
W
ID  mnC'Ox VGS  VT VDS
L
W
 KP VGS  VT VDS , KP  mnC'Ox
L
 dID 
W
 KP VDS
 dV 
L
 GS  V V V
DS
G
©rlc L35-29Apr2011
T
MOSFET Device
Structre
Fig. 4-1, M&A*
©rlc L35-29Apr2011
4-7a
(A&M)
©rlc L35-29Apr2011
Figure 4-7b
©rlc L35-29Apr2011
(A&M)
Figure 4-8a
©rlc L35-29Apr2011
(A&M)
Figure 4-8b
©rlc L35-29Apr2011
(A&M)
Body effect data
Fig 9.9**
©rlc L35-29Apr2011
MOSFET equivalent
circuit elements
Fig 10.51*
Cgs
2
1
 COx , Cgd  COx , COx  WLC'Ox
3
3
©rlc L35-29Apr2011
n-channel enh.
circuit model
G
RG
S
RB
Cgs
RDS
Cgd
Cbs
Idrain
DSS DSD
Cbd
RB
©rlc L35-29Apr2011
B
RD D
Cgb
MOS small-signal
equivalent circuit
Fig 10.52*
©rlc L35-29Apr2011
MOSFET circuit
parameters
Transcondu c tan ce
ID
gm 
VGS V
DS
Wmn C'Ox
VGS  VT , saturation
gms 
L
Wmn C'Ox
gmL 
VDS, ohmic region
L
©rlc L35-29Apr2011
MOSFET circuit
parameters (cont)
Output or drain conductance
ID
gd 
VDS V
GS
gds  0, saturation
gdL
WmnC'Ox
VGS  VT  VDS , ohmic

L
©rlc L35-29Apr2011
Substrate bias effect
on VT (body-effect)
Letting VT calculation be relative to Source
VT  VS  VFB  2 p 
xd,max 
VT VSB

 qNa xd,max
2 2 p  VSB

qNa
2 SiqNa
 0 
C'Ox
©rlc L35-29Apr2011
C'Ox
, where
, so VT  VT VSB  
 2
p
 VSB  2 p

Body effect data
Fig 9.9**
©rlc L35-29Apr2011
Fully biased nchannel VT calc
p  substrate : VG, at threshold  VT
VT  Vs  VFB  2p 
Q'd,max
 VFB  V
C'Ox
 ni 
p  Vt ln   0, Q'd,max  qNa xd,max ,
 Na 
xd,max 
©rlc L35-29Apr2011


2 2 p  VB  Vs 
qNa
, V  0
Values for ms
with silicon gate
n

poly to p - Si : ms

 NCNa  
 Si   Si  Vt ln 2  
 ni  

 NCNa  Eg
 Na 
Note : Vt ln 2    Vt ln 
 ni 
 ni  2q
Eg 
 NC  

p poly to n - Si : ms  Si    Si  Vt ln  
q 
 Nd  
 NC  Eg
 Nd 
Note : Vt ln    Vt ln 
 ni 
 Nd  2q
©rlc L35-29Apr2011
©rlc L35-29Apr2011
Fig 8.11**
|Q’d,max|/q (cm-2)
xd,max (microns)
Q’d,max and xd,max for
biased MOS capacitor
I-V relation
formn-MOS
C'


W
2
ID 
2VG  VT VDS  VDS
. Note for
2
L
ohmic
VDS  VG  VT  VDS,sat ,
ID
non-physical
result is non - physical.
ID,sat
At VDS,sat , n's,y L  0
n Ox
assume that channel curr.
is const for VDS  VDS,sat
ID,sat
mnC'Ox W
VGS  VT 2

2
L
©rlc L35-29Apr2011
saturated
VDS,sat
VDS
MOS channellength modulation
Fig 11.5*
©rlc L35-29Apr2011
Analysis of channel
length modulation
Assume the DR change  the channel
L
length modulation, so I'D 
ID
L  L
2Si
L 
2 p  VDS,sat  VDS
qNa


 2 p  VDS,sat , VDS  VDS  VDS,sat
mn C'Ox W
VGS  VT 2 1  VDS 
 ID,sat 
2 L
©rlc L35-29Apr2011
References
• CARM = Circuit Analysis Reference Manual,
MicroSim Corporation, Irvine, CA, 1995.
• M&A = Semiconductor Device Modeling with
SPICE, 2nd ed., by Paolo Antognetti and Giuseppe
Massobrio, McGraw-Hill, New York, 1993.
• **M&K = Device Electronics for Integrated
Circuits, 2nd ed., by Richard S. Muller and
Theodore I. Kamins, John Wiley and Sons, New
York, 1986.
• *Semiconductor Physics and Devices, by Donald A.
Neamen, Irwin, Chicago, 1997
©rlc L35-29Apr2011