Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Status of DEPFET pixel detectors for ILC H.-G. Moser Max-Planck-Institut for Physics, Munich H.-G. Moser on behalf of the DEPFET collaboration PRC Review May 10, 2007 DESY, Hamburg RWTH Aachen, University Bonn University Karlsruhe University Mannheim MPI Munich, HLL Charles University Prague IFIC Valencia Outline H.-G. Moser Max-Planck-Institut for Physics, Munich PRC Review May 10, 2007 DESY, Hamburg ILC requirements DEPFET Principle DEPFET Matrix Operation DEPFET System: Readout and Control ASIC ILC Layout, Power and Material Thinning Technology Laboratory Tests Irradiation Tests Beam Tests Software and Simulations New Developments: PXD5 Matrices, Switcher III, DCD1 Summary and Conclusions ILC Requirements Impact parameter resolution: H.-G. Moser Max-Planck-Institut for Physics, Munich s(IP)r-f = 5 mm -> spatial resolution < 4 mm 10 mm p(GeV/c) sin3/2q -> pixel size 25 x 25 mm2 -> ~ 0.1% X0 radiation length per layer Operation at high background rates: 0.04 hits/mm2/BX in the inner layer (1.5 cm) Occupancy of ~10% per bunchtrain 20 frames per train (1 ms) 40 MHz line rate => ½% Occup. (4096 lines along a 10cm module) Radiation Hard up to 360 kRad and 1012 n/cm2 (10 years) PRC Review May 10, 2007 DESY, Hamburg DEPFET Principle Each pixel is a p-FET on a completely depleted bulk H.-G. Moser Max-Planck-Institut for Physics, Munich A deep n-implant creates a potential minimum for electrons under the gate (“internal gate”) Signal electrons accumulate in the internal gate and modulate the transistor current (gq ~ 400 pA/e-) Accumulated charge can be removed by a clear contact (“reset”) Fully depleted: large signal, fast signal collection Low capacitance, internal amplification: => low noise Transistor on only during readout: => low power PRC Review May 10, 2007 DESY, Hamburg Complete clear: => no reset noise Compact layout: Two pixel share common source and clear (“double pixel”) DEPFET Matrix Operation Gates connected in rows (switch transistor on/off) H.-G. Moser Max-Planck-Institut for Physics, Munich DEPFET- matrix reset off off on reset Drain connected in columns (to current amplifier) off off Readout Cycle: off Clear connected in rows Switch transistor on Measure I1 = Isig + Iped Apply fast clear Measure I2 = Iped Switch transistor off PRC Review May 10, 2007 DESY, Hamburg gate nxm pixel VGATE, ON VGATE, OFF off IDRAIN drain VCLEAR, ON VCLEAR, OFF VCLEAR-Control 0 suppression output In the readout chip: subtract I1 – I2 = Isig (correlated sampling, suppress 1/f noise) Complete sample – clear sample cycle takes 50 ns Only one row active at a time Double rows: two rows read in parallel only 20 MHz line rate needed; double number of columns DEPFET System gate H.-G. Moser Max-Planck-Institut for Physics, Munich Clear switcher (64 channels) Gate switcher (64 channels) DEPFET matrix (64x128) Readout chip (128 channels) DEPFET- matrix reset off off on reset off off nxm pixel off off VGATE, ON VGATE, OFF IDRAIN drain VCLEAR, ON VCLEAR, OFF VCLEAR-Control 0 suppression output CURO readout chip (Uni Bonn) Switcher II chip (Uni Mannheim) On-chip pedestal subtraction (correlated 64 channels with 2 analog MUX outputs (‘A’ and ‘B’) Can switch up to 25 V Real time hit finding and zero suppression digital control ground + supply floating Hit addresses store in on-chip RAM fast internal sequencer for programmable pattern double sampling) (operates up to 80MHz) 0.25µm CMOS technology PRC Review May 10, 2007 DESY, Hamburg 128 channels Present dissipation: 1mW/channel @ 30MHz 0.8µm AMS HV technology (not rad hard <30kRad) Detector Layout for ILC H.-G. Moser Max-Planck-Institut for Physics, Munich 5 layer detector PRC Review May 10, 2007 DESY, Hamburg 1 2 3 4 5 8 faces 8 faces 12 faces 16 faces 20 faces 1.3 x 10 cm2 2x(2.0 x 12.5) cm2 2x(2.0 x 12.5) cm2 2x(2.0 x 12.5) cm2 2x(2.0 x 12.5) cm2 Power Consumption & Material Inner layer module: Matrix: H.-G. Moser Max-Planck-Institut Switcher III* for Physics, Munich DCD1 (readout)* active pixel: 500 mW active row: 225 mW active chip: 50 mW idle chips: 10 mW per channel: 5 mW x 2048 x2 x2 x 30 x 2048 (* New ASIC versions) 1.0 W 0.45 W 0.1 W 0.3 W 10.2 W 12 W per module 8 modules in inner layer, 56 outer layer modules a 21W: 1272 W Assuming that the 1/200 duty cycle can be used: 950 µs 6.4 W average for the full 5 layer detector 2820 bunches Material budget (within acceptance) PRC Review May 10, 2007 DESY, Hamburg Sensor: 50 mm Si: Frame:450 mm Si Switcher: 50 mm Si Gold bumps: 0.05% X0 0.05 % X0 0.01 % X0 0.03 % X0 Total: 0.12 % X0 199 ms 950 µs Thinning Technology sensor wafer H.-G. Moser Max-Planck-Institut for Physics, Munich handle wafer 1. implant backside on sensor wafer HLL 2. bond sensor wafer to handle wafer 3. thin sensor side to desired thickness Industry: TraciT, Grenoble 4. process DEPFETs on top side 5. structure resist, etch backside up to oxide/implant HLL main lab HLL special lab Sensor wafer: high resistivity d=150mm FZ wafer. Bonded on low resistivity “handle” wafer”. Rigid frame for handling and mechanical stiffness 50 mm thickness produced Samples of 10x1.3 cm2 & frame of 1 & 3 mm width PRC Review May 10, 2007 DESY, Hamburg Thinning Technology Thinned diodes: depletion at 50V Thinned diodes: Ileak ~ 100 pA/cm2 H.-G. Moser Max-Planck-Institut for Physics, Munich Thinned diodes: no deterioration of electrical properties Mechanical properties: 10 cm x 1.3 cm sensor area (50 mm thick) PRC Review May 10, 2007 DESY, Hamburg Support frame: 1 mm x 400 mm 3 mm x 400 mm W. Cooper, Fermilab 20 mm deflection under gravity Lab Tests: Speed High speed readout => high bandwidth => short shaping times Thermal noise of the DEPFET transistor depends on 1/SQRT(t) H.-G. Moser Max-Planck-Institut for Physics, Munich 1.6 e ENC at t=10 ms 40 e ENC at t=20ns (50MHz) Measurements of a single pixel with an external high bandwidth amplifier. PRC Review May 10, 2007 DESY, Hamburg Intrinsic DEPFET noise sufficiently low for high speed operation at ILC Lab Tests: Noise However system noise with CURO not satisfactory: H.-G. Moser Max-Planck-Institut for Physics, Munich ~ 250-300 e- (lab; beam test) ~100 nA with 0 load capacitance => ~250 e- @ gq = 400pA/e CURO was designed for small test matrices. Full size ILC matrices will have a large drain capacitance (5cm length -> 40 pF) New design of current readout chip needed (-> DCD1): PRC Review May 10, 2007 DESY, Hamburg -Improved noise performance -Optimization for large drain capacitances Radiation Hardness H.-G. Moser Max-Planck-Institut for Physics, Munich Expected (10 years): 360 kRad (ionising) 8.5x1011 n/cm2 (NIEL) (LDC DOD) Threshold voltage shift Change of gm, gq Traps: 1/f noise increase Larger leakage currents gamma, proton*, neutron* irradiations * @ Berkely PRC Review May 10, 2007 DESY, Hamburg Type Gamma Neutron Protons fluence 913 kRad 2.4x1011 n/cm2 3x1012 n/cm2 & 280 kRad ILC years DIthresh ~30 ~4V 2 0V 35 ~5V gm = ~ -15% Ileak (pixel) ~100fA 1.4 pA 25.9 pA Radiation Hardness H.-G. Moser Max-Planck-Institut for Physics, Munich Cl PRC Review May 10, 2007 DESY, Hamburg non-irradiated Vthresh≈-0.2V, Vgate=-2V time cont. shaping t=10 μs 912 krad 60Co Vthresh≈-4.0V time cont. shaping t=10 μs Noise ENC=1.6 e- (rms) Noise ENC=3.5 e- (rms) at T>23 degC D1 G1 Threshold S Cl voltage G2 at T>23 degC shift: can be compensated (~4V) D2 NIEL: increase of leakage current => shot noise 12 3x10 n/cm2 (35 ILC years): 95e- ENC @ 200C (tframe= 50 ms) 22e- ENC @ 00C Beam Tests 5 Test beam periods: H.-G. Moser Max-Planck-Institut for Physics, Munich 3 x @ DESY: 6 GeV/c; Si-strip telescope; resolution limited by multiple scattering 2 x @ CERN: 120 GeV/c; DEPFET telescope; August & October 06, Analysis ongoing Sensors: -450 mm thick -128 x 64 pixel a 36 x 22 mm2 + variations Speed: -Clear: 20ns -Line readout: 240ns -Corresponds to 4MHz PRC Review May 10, 2007 DESY, Hamburg However, actual rate lower because of full frame readout 34 2 1 5 Beam Tests H.-G. Moser Max-Planck-Institut for Physics, Munich Cluster finding: -Seed > 5s -Neighbours: > 2s in N x N Signal contained in 3x3 cluster (~5 pixels) S/N = 110 (for 450 mm thick sensors) Noise ~ 300 e - pickup of analogue output - problems of internal timing - front end noise… Good efficiency and purity ~ 100 % for 5 – 7 s seed cut PRC Review May 10, 2007 DESY, Hamburg Beam Test: Resolution H.-G. Moser Max-Planck-Institut for Physics, Munich DEPFET Telescope @ CERN 120 GeV/c beam 4 planes to determine track 5th plane in the middle as DUT Submicron extrapolation accuracy! Resolution (h algorithm) x (36 mm pitch): 3.8 mm y (22 mm pitch): 1.7 mm PRC Review May 10, 2007 DESY, Hamburg Software Development H.-G. Moser Max-Planck-Institut for Physics, Munich DEPFET implemented in ILC/LDC Software framework (Mokka) -Local Landau fluctuations -Geometry (5 layer as proposed) -Active and passive material Digitization in Marlin: -Drift and diffusion -Lorentz angle -Noise (100 e- ILC, 300 beam test) Simulation tuned using beam test data Possibility to include beam related background PRC Review May 10, 2007 DESY, Hamburg Comparison Data - MC Comparison MC and beam test H.-G. Moser Max-Planck-Institut for Physics, Munich -Cluster size as function of incident angle -Signal distribution for various incident angles -Excellent agreement -> reliable extrapolation to ILC conditions Data PRC Review May 10, 2007 DESY, Hamburg MC MC Studies Spatial resolution for 50 mm thick 25 x 25 mm2 pixels: H.-G. Moser Max-Planck-Institut for Physics, Munich Impact parameter resolution (5 layers, frames, 500 mm Be beam pipe) s(IP)r-f = 4.5 mm PRC Review May 10, 2007 DESY, Hamburg 8.7 mm p(GeV/c) sin3/2q ILC requirements fulfilled <3.5 mm (r-f) <4.0 mm (z) MC Studies H.-G. Moser Max-Planck-Institut for Physics, Munich Efficiency and fakes with beam related background tt -> 6 jets 400 background hits/BX (inner layer) Accumulated 150 BX (inner layers) 300 BX (outer layers) Stand alone pattern recognition and tracking -Generally ok, but problems at low pt (and large cosq) -Higher readout speed helps -Overall tracking? (helps at large pt) -General ILC problem (not DEPFET specific) PRC Review May 10, 2007 DESY, Hamburg New Pixel Production New Pixel Production: PXD5 H.-G. Moser Max-Planck-Institut for Physics, Munich standard arrays compatible to existing hybrids wide arrays (512 x 512, full ILC) -Larger matrices: 512 x 512 128 x 2048 -optimization clear gain -variants: small pixels (20x20 mm2) shorter gate -> higher gq -Test structures for bump bonding -Ready in June 2007 long arrays (256 x 1024, ½ ILC) various new standard arrays (64 x 256 pixels, down to 20x20µm2) Rainer Richter, MPI HLL 512 x 512 pixels 16.4 x 12.3 mm2 area PRC Review May 10, 2007 DESY, Hamburg gq (pA/e-) simulation at ID=50 µA effective gate length Leff (µm) Leff = L - 2 x under etching of 1.2µm Switcher III H.-G. Moser Max-Planck-Institut for Physics, Munich -Radiation hard (AMS 0.35 mm, layout) -10V swing (-> stacked transistors) -Low power (“0” standby current) -Fast settling (<4ns at 10 pF) -Compact layout (1.24 x 5.8 mm2) -Test chip produced rad hardness tested > 600kRad! -128 channels - Full chip produced and tested 9V distributed over 3 transistors with 3V -> rad hard. technology possible PRC Review May 10, 2007 DESY, Hamburg Chip prepared for bump bonding DCD1 Current Readout Chip H.-G. Moser Max-Planck-Institut for Physics, Munich Improved noise performance of regulated cascode especially at large load capacitances expect 40-50 pF for 5cm long matrices simulation: 34 nA @ 40 pF -Fully differential analog processing -Fast 8 bit ADC (12.5MHz) for each channel -5mW per channel -No hit processing (eventually done in a FPGA) -Bump bond geometry -Rad hard layout (analogue part), UMC018 process -Test chip submitted Test chip: 72 channels Finale chip: 144 channels on PRC Review May 10, 2007 DESY, Hamburg Summary and Conclusions Achievements since last PRC (2005) - H.-G. Moser Max-Planck-Institut for Physics, Munich Thinning Technology established Low intrinsic noise at ILC bandwidth Radiation hardness demonstrated (Gamma, Proton & Neutron irradiations) - New Switcher III chip operational (rad. hard) - Test beam measurements with DEPFET based telescope (<1 mm extrapolation accuracy, 1.74 mm resolution) - Software and simulation: reproduce beam test data, MC of ILC vertex detector -> ILC specifications fulfilled Next Steps: - New matrix production (large, ILC scale matrices, various improvements) - Test new readout & control ASIC (speed, noise, radiation hardness) - Operate system at ILC speed - Bump bonding studies Future Steps PRC Review May 10, 2007 DESY, Hamburg - Produce thinned matrices (2008/2009) Alternative layout for high frame rates H.-G. Moser Max-Planck-Institut for Physics, Munich Increase frame rate by finer segmentation of module: -1.25 cm column length instead of 5 cm -4 x frame rate at same basic readout speed -Lower capacitance (better S/N) Disadvantages: -Material -Power -Complex Routing Interconnection can be done using a 3D integration technique (SLID/IVD by IZM Fraunhofer) PRC Review May 10, 2007 DESY, Hamburg