Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 12 Field-Effect Transistors 場效電晶體 Field-Effect Transistors (FETs) •FET (場效電晶體) 是利用電場來控制電流 的大小,而且組成電流的載子僅限一種極 性,即電洞或是自由電子 。 •Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET,金氧半場效電晶體) 可分為NMOS (以電子為電流載子)與 PMOS(以電洞為電流載子) 。 •MOSFET 包含source (源極)、gate (閘極) 、drain(汲極)及body(基座) 。 12.1 NMOS AND PMOS TRANSISTORS NMOS Transistor (n-p-n) 氧化物為絕緣體,沒有電 流能進入閘極端; (gate 閘極) (drain 汲極) 控制閘極電壓能夠調整 (source 源極) 汲極到源極的電流 (O, 氧) (M, 金) 場效 (S, 半) (Body 基板) NMOS (n-channel MOS) •NMOS 之 source (源極)與drain(汲極)為ntype 半導體, body(基座) 為p-type 半導體 , gate (閘極)為導體 。 n-p-n NMOS 的運作 (Operation) •NMOS 的運作可分為三區(region) •Cutoff Region (截止區) vGS Vto •Triode Region (三極區) or Linear Region (線性區) vGS Vto and vDS vGS Vto •Saturation Region (飽合區) v V and vDS vGS GS to Vto Operation in the Cutoff Region •當閘極(gate)與源極(source)間電壓vGS =0,兩個pn接面 (body-source) 與(body-drain)可視為兩個方向相反的二極 體,此時MOSFET為截止(cutoff)。 •當閘極(gate)與源極(source)間電壓vGS 逐漸上升到>Vto (threshold voltage,臨限電壓)時,則NMOS才會開始導通。 iD 0 for vGS Vto Operation in the Triode Region vGS Vto and vDS vGS Vto •當閘極(gate)帶正電時,可逐漸吸引自由電子聚集 在絕緣層的下方, 並將電洞推離絕緣層下方。 vGD Vto vGS vDS Vto vDS 0 vDS 0 0 vDS vGS Vto Operation in the Triode Region vGS Vto and vDS vGS Vto •當閘極(gate)與源極(source)間電壓vGS 逐漸上升到>Vto (threshold voltage,臨限電壓),且在drain和source之間加 有電壓vDS,則形成n-type通道(channel),通道中的自由 電子受到外加電場的驅動,形成汲極電流(drain current)iD,其方向從drain流向source,和通道中的電子 流方向相反。 •當vDS很小時, iD與vDS成正比, 亦與vGS - Vto成正比。 •由於有氧化絕緣層,故閘極電流 iG = 0。 vDS vGS Vto vGS vDS Vto vGD Vto Operation in the Triode Region •In the triode region, the NMOS behaves as a resistor connected between drain and source, but the resistance decreases as vGS increases. 0, if vDS~0 iD K 2 vGS Vto vDS v , 2 DS W K L KP 2 Device parameter Operation in the Saturation Region vGS Vto and vDS vGS Vto •當drain和source之間電壓vDS≥ vGS - Vto(or vGD≤ Vto) 則ntype通道在drain端寬度變為0 ,vDS再變大, iD不再上升 , 稱為飽合區。 Operation in the Saturation Region iD K vGS Vto 2 Boundary between Triode and Saturation Regions At boundary, 使得n-type通道在drain端寬度剛好為0 vGD Vto vGS vDS Vto 代入I-V equation in saturation region iD Kv 2 DS iD K vGS Vto ( vGS Vto vDS ) 2 Boundary between Triode and Saturation Regions 將 vGS Vto vDS 代入I-V equation in triode region iD K 2 vGS Vto vDS v iD K 2v v 兩者結果一樣。 2 DS 2 DS Kv 2 DS 2 DS boundary Example 12.1 A NMOS transistor W=160um, L=2um, KP=50uA/V2, and Vto=2 V. Plot the drain characteristic curves to scale for vGS=0, 1,2, 3, 4, and 5 V. 1. 求 K W KP K ( ) 2mA / V 2 L 2 2. 求 boundary 2 iD Kv 2 DS 2 10 3 vDS 3. 求 saturation currents 3 iD K (vGS Vto ) 2 10 (vGS 2) 2 iD 18mA for vGS 5V iD 8mA for vGS 4V iD 2mA for vGS 3V iD 0mA for vGS 2V 2 4. Plot characteristics in the triode region (parabola 拋物線). iD K 2 vGS Vto vDS v , 2 DS PMOS •PMOS 之 source 與drain為p-type 半導體, body為n-type 半導體, gate (閘極)為導體 。 •以電洞為電流載子。 MOSFET Summary 12.2 LOAD-LINE ANALYSIS OF A SIMPLE NMOS AMPLIFIER 12.2 LOAD-LINE ANALYSIS OF A SIMPLE NMOS AMPLIFIER •VGG (dc source) 對NMOS 產生偏壓(bias) , 決定操作點, 當ac input 在操作點附近隨時 間變化,導致vGS, iD亦隨時間改變。 •iD隨時間改變,導致RD亦上的壓降隨時間改 變, 使得vDS產生 ac output。 KVL vGS (t ) vin (t ) VGG sin( 2000t ) 4 vDD RDiD (t ) vDS (t ) Load-line equation 20 iD (t )(mA) vDS (t ) Load-line 兩端點 (vDS 0V, iD 20mA) (vDS 20V, iD 0mA) •Quiescent operation point (Q point) is at vin=0. vGS VGG 4V I DQ 9mA vGS (t ) vin (t ) VGG sin( 2000t ) 4 VGS max 5V(point A) VGS min 3V(point B) 1V VGSQ=4 5V VDQ=11 7V Distortion (變形) Distortion Distortion is due to that the characteristic curves for the FET are not uniformly spaced. If a much smaller input amplitude was applied we would have amplification without appreciable distortion. 12.3 Bias Circuits Amplifier Analysis Amplifier analysis has two steps: 1. Determine the Q point. 2. Use a small-signal equivalent circuit to determine impedances and gains. The Fixed- Plus Self-Bias Circuit VG vDS ? The Fixed- Plus Self-Bias Circuit 1. Thévenin equivalent VG VDD VG R2 R1 R2 R1 R2 RG R1 R2 2. KVL iD vGS VG vGS RsiD ( iG 0) 3. Usually, transistor operates in saturation region iD K (vGS Vto ) 2 4. Load Line Analysis iD vs. vGS vGS Vto turn off vGS Vto saturation VG vGS RsiD iD K (vGS Vto ) 2 5. Determine vDS iD vDS vDD ( RD Rs )iD Example 12.2 Analyze the following circuit. The transistor KP=50uA/V2, Vto=2 V, L=10um, W=400um 1. Determine K W KP K ( ) 1mA / V 2 L 2 2. Thévenin equivalent VG VDD R2 1 20 5V R1 R2 3 1 3. Determine VGSQ VG VGSQ Rs I DQ I DQ K (VGSQ Vto ) 2 VG VGSQ Rs K (VGSQ Vto )2 2 VGSQ ( 1 V 2Vto )VGSQ Vto2 G 0 Rs K Rs K 2 VGSQ 3.630VGSQ 2.148 0 VGSQ 2.886 or 0.744 × 4. IDQ & VDSQ I DQ K (VGSQ Vto ) 0.784mA 2 VDSQ VDD ( RD Rs ) I DQ 14.2V 12.4 SMALL-SIGNAL EQUIVALENT CIRCUITS iD t I DQ id t Small signal (ac) vGS t VGSQ v gs t Small signal (ac) To determine vgs(t) vs. id(t) iD K (vGS Vto ) 2 for satutation I DQ id (t ) K[VGSQ vgs (t ) Vto ]2 2 K (VGSQ Vto )2 2K (VGSQ Vto )vgs (t ) Kvgs (t ) SMALL-SIGNAL EQUIVALENT CIRCUITS 2 I DQ id (t ) K (VGSQ Vto )2 2K (VGSQ Vto )vgs (t ) Kvgs (t ) At Q point I DQ K (VGSQ Vto ) 2 2 (2K (VGSQ Vto )vgs (t ) Kvgs (t )) 0 I DQ id (t ) K (VGSQ Vto ) 2K (VGSQ Vto )vgs (t ) Kv (t ) 2 2 gs id (t ) 2 K (VGSQ Vto )vgs (t ) g m vgs (t ) g m 2 K (VGSQ Vto ) 2 KI DQ 2 KP W / L I DQ W K L KP 2 12.5 Common Source Amplifiers vin? vo ? Voltage gain Av=vo/ vin? Common-Source Amplifiers •C1 and C2 are coupling capacitors and Cs is the bypass capacitor. The capacitors are intended to have large impedances for the dc signal and very small impedances for the ac signal. 1 Zc j 2fC Zc , f 0 Zc 0, f 0, or C is large Common-Source Amplifiers •For DC analysis, the capacitors are replaced by open circuits to determine the quiescent operation point (Q point). The transconductance gm for the small-signal equivalent circuit is also determined. •For AC analysis, the capacitor are replaced by short circuits to determine the ac voltage gain Av=vo/vin. DC Analysis Coupling capacitors DC voltage sources Bypass capacitors The Small-Signal Equivalent Circuit •In small-signal midband analysis of FET amplifiers, the coupling capacitors, bypass capacitors, and dc voltage sources are replaced by short circuits. •The FET is replaced with its small-signal equivalent circuit. Then, we write circuit equations and derive useful expressions for gains, input impedance, and output impedance. AC Analysis DC voltage sources Coupling capacitors Bypass capacitors DC voltage sources Coupling capacitors Bypass capacitors SMALL-SIGNAL EQUIVALENT CIRCUITS (12.4) id (t ) g m v gs (t ) A more complex equivalent circuit consider drain resistance rd 1 rd id (t ) g m vgs (t ) vds / rd iD v DS Q point Common Source Amplifiers: FET source 端接ground Common Source Amplifiers: Equivalent load resistance 1 RL 1 rd 1 RD 1 RL Input voltage & output voltage vo g m v gs RL vin v gs Voltage Gain vo Av g m RL vin Common Source Amplifiers: Input Resistance vin Rin RG R1 R2 iin Output resistance •disconnect the load, •replace the signal source by the internal resistance, • find the resistance by looking into the output terminals. 1 Ro 1 RD 1 rd Example 12.4 Analyze the following circuit. KP=50uA/V2, Vto=2 V, L=10um, W=400um (identical to example 12.2). Assume v(t ) 100 sin( 2000t )mV rd Find •midband voltage gain •input resistance •output resistance •output voltage Example 12.4 Analyze the following circuit. KP=50uA/V2, Vto=2 V, L=10um, W=400um (identical to example 12.2). DC Analysis Fine Q point (see example 12.2) I DQ K (VGSQ Vto )2 0.784mA Example 12.4 Analyze the following circuit. KP=50uA/V2, Vto=2 V, L=10um, W=400um (identical to example 12.2). AC Analysis Fine gm(see Ch 12.4) g m 2 K (VGSQ Vto ) 2 KP W / L I DQ 1.77mS Equivalent load resistance 1 RL 3197 1 rd 1 RD 1 RL Voltage Gain ( rd ) vo Av g m RL 5.66 vin Example 12.4 Analyze the following circuit. KP=50uA/V2, Vto=2 V, L=10um, W=400um (identical to example 12.2). Input Resistance vin Rin RG R1 R2 750k iin 1 RD 4.7 k 1 RD 1 rd Rin vin (t ) vgs (t ) v(t ) 88.23 sin( 2000t )mV Rin R Output Resistance R o Input voltage Output voltage vo (t ) Av vin (t ) 500 sin( 2000t )mV 12.7 CMOS Logic Gate CMOS: Complementary Metal-Oxide- Semiconductor (互補 式金氧半導體是一種積體電路製程,可在矽晶圓上製作出 PMOS(P-channel MOSFET)和NMOS(N-channel MOSFET)元件,由於PMOS與NMOS在特性上為互補性 ,因此稱為CMOS。 MOSFET Summary VGS=VDD (high) VGS= −VDD NMOS ON PMOS ON VGS=0 (low) NMOS OFF VGS=0 PMOS OFF CMOS Inverter NMOS VGS=Vin Vin=VDD (high) PMOS VGS= Vin -VDD NMOS VGS= VDD ON, PMOS VGS= 0 OFF, Vout=0 (low) Vin=0 (low) NMOS VGS= 0 OFF PMOS VGS= -VDD ON, Vout= VDD (high) CMOS NAND Gate 1. A= high & B= high M1 and M2 OFF M3 and M4 ON Vout low 2. A= low & B= low M1 and M2 ON M3 and M4 OFF Vout high CMOS NAND Gate 3. A= high & B= low M1 OFF and M2 ON M3 ON and M4 OFF Vout high 4. A= low & B= high M1 ON and M2 OFF M3 OFF and M4 ON Vout high CMOS NOR Gate 1. A= low & B= low 3. A= high & B= high M1 and M2 ON M1 and M2 OFF M3 and M4 OFF M3 and M4 ON Vout high Vout low 2. A= high & B= low M1 and M4 OFF M2 and M3 ON Vout low