Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS MOSFET • METAL-OXIDE-SEMICONDUCTOR FIELD EFFECT TRANSISTOR • VOLTAGE - CONTROLLED DEVICE • LOW POWER DISSIPATION MOSFET METAL OXIDE OXIDE SOURCE CHANNEL L OXIDE DRAIN NMOSFET ENHANCEMENT MODE DEVICE -VS +VD +VG METAL OXIDE OXIDE OXIDE N TYPE SOURCE N TYPE DRAIN DEPLETION LAYER DEPLETION LAYER P TYPE SUBSTRATE -VB MOSFET “ON” CONDITION +VD VG > VTN ID METAL OXIDE OXIDE n+ p electrons OXIDE n+ MOSFET PARAMETERS • iD – DRAIN CURRENT • VTP,VTN – THRESHOLD VOLTAGE (VTH) • vDS – DRAIN TO SOURCE VOLTAGE • vGS – GATE TO SOURCE VOLTAGE • vB – BULK VOLTAGE THRESHOLD VOLTAGE • VOLTAGE REQUIRED TO CREATE AN INVERSION LAYER OF CHARGE UNDER THE GATE OXIDE • POSITIVE FOR n-CHANNEL DEVICES • NEGATIVE FOR p-CHANNEL DEVICES BULK VOLTAGE • LOWEST VOLTAGE AVAILABLE FOR NMOS (NCHANNEL) DEVICES • HIGHEST VOLTAGE AVAILABLE FOR PMOS (PCHANNEL) DEVICES • REVERSE-BIASES PN JUNCTIONS MOSFET CAPACITANCE • POSITIVE OR NEGATIVE VOLTAGE AT GATE TERMINAL INDUCES CHARGE ON GATE METAL • CHARGE OF OPPOSITE TYPE ACCUMULATES IN CHANNEL • FORMS MOSFET CAPACITOR OXIDE CAPACITANCE Cox ox tox ox 3.9 o o 8.85 10 14 F / cm PARAMETER DEFINITIONS • n,p - ELECTRON OR HOLE MOBILITY • ox – PERMITTIVITY OF OXIDE • tox – OXIDE THICKNESS • (W/L) – ASPECT RATIO MOSFET OPERATION • SOURCE TERMINAL IS GROUNDED • GATE AND DRAIN VOLTAGES REFERENCED TO SOURCE VOLTAGE • VOLTAGE IS APPLIED TO GATE TERMINAL TO INDUCE CHARGE IN THE CHANNEL CHARGE FLOW • CHARGE IS PULLED INTO CHANNEL FROM DRAIN AND SOURCE REGIONS • CHARGE FLOWS FROM SOURCE TO DRAIN AS DRAIN VOLTAGE IS INCREASED DEVELOPMENT OF MOSFET EQUATIONS dq C ox Wdx v GS vx VTH dvx v DS Ex dx dx velocity of channel charge dt DEVELOPMENT OF MOSFET EQUATIONS dx velocity of channel charge dt dq i dt dq dx i dx dt dvx i D i i D μ n C ox Wv GS vx VTH dx DEVELOPMENT OF MOSFET EQUATIONS dvx iD i iD nCoxW vGS vx VTH dx iD dx nCoxW vGS vx VTH dvx L i 0 D dx v DS C W v n 0 ox GS vx VTH dvx DEVELOPMENT OF MOSFET EQUATIONS W iD nCox L 1 2 vGS VTH vDS vDS 2 k n' nCox W iD k L ' n 1 2 vGS VTH vDS vDS 2 N-CHANNEL MOSFET EQUATIONS vGS VTH iD 0 vDS vGS VTH W iD k L vDS vGS VTH 1 ' W 2 iD k n vGS VTH 2 L ' n 1 2 vGS VTH vDS vDS 2 MOSFET CHARACTERISTICS ID 1.5mA vGS3 1.0mA vGS2 0.5mA vGS1 0mA 0V 2V 4V 6V vDS 8V 10V 12V TRANSCONDUCTANCE PARAMETER COMPONENTS • MOBILITY • ELECTRIC PERMITTIVITY • OXIDE THICKNESS • ASPECT RATIO TRANSCONDUCTANCE PARAMETER PHYSICS W K k' L ox k ' Cox k ' tox Cox ox tox n-CHANNEL MOSFET OPERATION IN CUTOFF REGION vGS VTH iD 0 n-CHANNEL MOSFET OPERATION IN LINEAR REGION vDS vGS VTH 1 2 iD K n vGS VTH vDS vDS 2 n-CHANNEL MOSFET OPERATION IN SATURATION REGION vDS vGS VTH 1 2 iD K n vGS VTH 2 p-CHANNEL MOSFET OPERATION IN CUTOFF REGION vSG VTH iD 0 p-CHANNEL MOSFET OPERATION IN LINEAR REGION vSD vSG VTH 1 2 iD K p vSG VTH vSD vSD 2 p-CHANNEL MOSFET OPERATION IN SATURATION REGION vSD vSG VTH 1 2 iD K p vSG VTH 2 NMOS INCREMENTAL RESISTANCE IN THE LINEAR REGION 1 2 iD K n vGS VTH vDS vDS 2 vDS 1 iD K n vGS VTH vDS rDS iD vDS 1 v DS small rDS K n VGS VTH 1 vGS VGS PMOS INCREMENTAL RESISTANCE IN THE LINEAR REGION 1 2 iD K p vSG VTH vSD vSD 2 vDS 1 iD K p vSG VTH vSD iD rSD vSD 1 vSD small rDS K n VSD VTH 1 vSG VSG MODULATED CHANNEL IN SATURATION REGION VD>>VG +VD VG > VTN ID METAL OXIDE OXIDE n+ OXIDE n+ TAPERED CHANNEL p NMOS INCREMENTAL RESISTANCE IN SATURATION REGION 1 2 iD K n vGS VTH 1 vDS 2 iD rO vDS rO I D 1 1 vGS VGS Kn 2 rO VGS VTH 2 1 PMOS INCREMENTAL RESISTANCE IN SATURATION REGION 1 2 iD K p vSG VTH 1 vSD 2 iD rO vSD rO I D 1 1 vSG VSG Kp 2 VSG VTH rO 2 1 DEPENDENCE ON DRAIN VOLTAGE 1 rO λI D λ channel length modulation parameter 1 ' W 2 VGS VTH ID k n 2 L PSPICE MOSFET SYMBOLS p-channel enhancement n-channel enhancement NMOS LARGE SIGNAL MODEL G + VGS S D G + 1 ' W 2 k n VGS VTH 2 L rO VDS S DEVELOPMENT OF MOSFET SMALLSIGNAL MODEL vGS VGS vgs iD I D id TOTAL CURRENT AND VOLTAGE 1 'W VGS vgs VTN iD k n 2 L iD 2 1 'W VGS VTH 2 2VGS VTH vgs vgs2 kn 2 L 1 'W VGS VTH vgs iD k n 2 L 1 'W VGS VTH 2 2VGS VTH vgs v 1 iD k n 2 L 2 gs 2 COMPONENTS OF TOTAL CURRENT iD I D id 1 'W 2 ' W iD k n VGS VTH k n VGS VTH v gs 2 L L W VGS VTH vgs id k L ' n MOSFET TRANSCONDUCTANCE W VGS VTH vgs id k L ' n id gm v gs W VGS VTH gm k L ' n ALTERNATIVE TRANSCONDUCTANCE EQUATION 1 'W 2 I D kn VGS VTH 2 L VGS VTH 2I D ' W kn L W ' W VGS VTH g m 2kn I D gm k L L ' n SMALL-SIGNAL MODEL g VCC + vgs s id d + gmvgs rO vds s