Download Static Inverter

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ECE484
VLSI Digital Circuits
Fall 2010
Lecture 04: CMOS Inverter (static view)
Mary Jane Irwin ( www.cse.psu.edu/~mji )
www.cse.psu.edu/~cg477
Modified by Dr. George Engel (SIUE)
[Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
CSE477 L04 CMOS Inverter.1
Irwin&Vijay, PSU, 2002
CMOS Inverter:
A First Look
VDD
Vin
Vout
CL
CSE477 L04 CMOS Inverter.2
Irwin&Vijay, PSU, 2002
CMOS Inverter:
Steady State Response
VDD
VDD
VOL = 0
VOH = VDD
VM = f(Rn, Rp)
Rp
Vout = 1
Vout = 0
Rn
Vin = 0
CSE477 L04 CMOS Inverter.3
Vin = V DD
Irwin&Vijay, PSU, 2002
CMOS Properties

Full rail-to-rail swing  high noise margins

Logic levels not dependent upon the relative device sizes 
transistors can be minimum size  ratioless

Always a path to Vdd or GND in steady state  low
output impedance (output resistance in k range) 
large fan-out (albeit with degraded performance)

Extremely high input resistance (gate of MOS transistor
is near perfect insulator)  nearly zero steady-state
input current

No direct path steady-state between power and ground
 no static power dissipation

Propagation delay function of load capacitance and
resistance of transistors
CSE477 L04 CMOS Inverter.4
Irwin&Vijay, PSU, 2002
Review: Short Channel I-V Plot (NMOS)
X 10-4
2.5
VGS = 2.5V
2
VGS = 2.0V
1.5
1
VGS = 1.5V
0.5
VGS = 1.0V
0
0
0.5
1
1.5
2
2.5
VDS (V)
NMOS transistor, 0.25um, Ld = 0.25um, W/L = 1.5, VDD = 2.5V, VT = 0.4V
CSE477 L04 CMOS Inverter.5
Irwin&Vijay, PSU, 2002
Review: Short Channel I-V Plot (PMOS)

All polarities of all voltages and currents are reversed
-2
VDS (V)
-1
0
0
VGS = -1.0V
-0.2
VGS = -1.5V
-0.4
-0.6
VGS = -2.0V
-0.8
VGS = -2.5V
-1 X 10-4
PMOS transistor, 0.25um, Ld = 0.25um, W/L = 1.5, VDD = 2.5V, VT = -0.4V
CSE477 L04 CMOS Inverter.6
Irwin&Vijay, PSU, 2002
Transforming PMOS I-V Lines

Want common coordinate set Vin, Vout, and IDn
IDn
IDSp = -IDSn
VGSn = Vin ; VGSp = Vin - VDD
VDSn = Vout ; VDSp = Vout - VDD
Vout
Vin = 0
Vin = 0
Vin = 1.5
Vin = 1.5
VGSp = -1
VGSp = -2.5
CSE477 L04 CMOS Inverter.7
Mirror around x-axis
Vin = VDD + VGSp
IDn = -IDp
Horiz. shift over VDD
Vout = VDD + VDSp
Irwin&Vijay, PSU, 2002
CMOS Inverter Load Lines
PMOS
2.5
NMOS
X 10-4
Vin = 0V
Vin = 2.5V
2
Vin = 0.5V
Vin = 2.0V
1.5
Vin = 1.0V 1
Vin = 2V
0.5
Vin = 1V
Vin = 1.5V
Vin = 1.5V
Vin = 0.5V
Vin = 1.5V
Vin = 1.0V
Vin = 2.0V
Vin = 0.5V
0
Vin = 2.5V 0
0.5
1
1.5
Vout (V)
2
2.5 Vin = 0V
0.25um, W/Ln = 1.5, W/Lp = 4.5, VDD = 2.5V, VTn = 0.4V, VTp = -0.4V
CSE477 L04 CMOS Inverter.8
Irwin&Vijay, PSU, 2002
CMOS Inverter VTC
NMOS off
PMOS res
2.5
NMOS sat
PMOS res
Vout (V)
2
1.5
NMOS sat
PMOS sat
1
NMOS res
PMOS sat
0.5
NMOS res
PMOS off
0
0
0.5
1
1.5
2
2.5
Vin (V)
CSE477 L04 CMOS Inverter.10
Irwin&Vijay, PSU, 2002
CMOS Inverter:
Switch Model of Dynamic Behavior
VDD
VDD
Rp
Vout
Vout
CL
Vin = 0
CL
Rn
Vin = V DD
 Gate response time is determined by the time to charge CL
through Rp (discharge CL through Rn)
CSE477 L04 CMOS Inverter.12
Irwin&Vijay, PSU, 2002
Relative Transistor Sizing

When designing static CMOS circuits,
balance the driving strengths of the
transistors by making the PMOS section
wider than the NMOS section to


CSE477 L04 CMOS Inverter.13
maximize the noise margins and
obtain symmetrical characteristics
Irwin&Vijay, PSU, 2002
Switching Threshold

VM where Vin = Vout (both PMOS and NMOS in saturation
since VDS = VGS)
VM  rVDD/(1 + r) where r = kpVDSATp/knVDSATn

Switching threshold set by the ratio r, which compares
the relative driving strengths of the PMOS and NMOS
transistors

Want VM = VDD/2 (to have comparable high and low noise
margins), so want r  1
(W/L)p
=
kn’VDSATn(VM-VTn-VDSATn/2)
(W/L)n kp’VDSATp(VDD-VM+VTp+VDSATp/2)
CSE477 L04 CMOS Inverter.14
Irwin&Vijay, PSU, 2002
Switch Threshold Example

In our generic 0.25 micron CMOS process, using the
process parameters from slide L03.25, a VDD = 2.5V, and
a minimum size NMOS device ((W/L)n of 1.5)
NMOS
PMOS
VT0(V)
0.43
-0.4
(V0.5)
0.4
-0.4
VDSAT(V)
0.63
-1
(V-1)
0.06
-0.1
k’(A/V2)
115 x 10-6
-30 x 10-6
(W/L)p 115 x 10-6 0.63 (1.25 – 0.43 – 0.63/2)
=
(W/L)n
x
-30 x
10-6
x
-1.0
(1.25 – 0.4 – 1.0/2)
= 3.5
(W/L)p = 3.5 x 1.5 = 5.25 for a VM of 1.25V
CSE477 L04 CMOS Inverter.16
Irwin&Vijay, PSU, 2002
Simulated Inverter VM
VM is relatively
insensitive to variations in
device ratio

1.5
1.4
1.3
setting the ratio to 3, 2.5
and 2 gives VM’s of 1.22V,
1.18V, and 1.13V

1.2
1.1
Increasing the width of
the PMOS moves VM
towards VDD

1
0.9
0.8
0.1
1
(W/L)p/(W/L)n
Note: x-axis is semilog
CSE477 L04 CMOS Inverter.17
~3.4
10
Increasing the width of
the NMOS moves VM
toward GND

Irwin&Vijay, PSU, 2002
Noise Margins Determining VIH and VIL
By definition, VIH and VIL are
where dVout/dVin = -1 (= gain)
3
VOH = VDD
NMH = VDD - VIH
NML = VIL - GND
2
VM
Approximating:
VIH = VM - VM /g
VIL = VM + (VDD - VM )/g
1
VOL = GND0
VIL
Vin VIH
A piece-wise linear
approximation of VTC
CSE477 L04 CMOS Inverter.18
So high gain in the transition
region is very desirable
Irwin&Vijay, PSU, 2002
CMOS Inverter VTC from Simulation
0.25um, (W/L)p/(W/L)n = 3.4
(W/L)n = 1.5 (min size)
VDD = 2.5V
2.5
Vout (V)
2
VM  1.25V, g = -27.5
1.5
VIL = 1.2V, VIH = 1.3V
NML = NMH = 1.2
(actual values are
VIL = 1.03V, VIH = 1.45V
NML = 1.03V & NMH = 1.05V)
1
0.5
0
0
0.5
1
Vin (V)
CSE477 L04 CMOS Inverter.19
1.5
2
2.5
Output resistance
low-output = 2.4k
high-output = 3.3k
Irwin&Vijay, PSU, 2002
Gain Determinates
Vin
0
0.5
1
0
-2
-4
-6
-8
1.5
2
Gain is a strong function of the
slopes of the currents in the
saturation region, for Vin = VM
(1+r)
g  ---------------------------------(VM-VTn-VDSATn/2)(n - p )
-10
-12
-14
-16
-18
CSE477 L04 CMOS Inverter.20
Determined by technology
parameters, especially channel
length modulation (). Only
designer influence through
supply voltage and VM (transistor
sizing).
Irwin&Vijay, PSU, 2002
Impact of Process Variation on VTC Curve
2.5
Good PMOS
Bad NMOS
Vout (V)
2
1.5
Nominal
1
Bad PMOS
Good NMOS
0.5
0
0
0.5
1
1.5
2
2.5
Vin (V)
Process variations (mostly) cause a shift in the switching threshold
CSE477 L04 CMOS Inverter.21
Irwin&Vijay, PSU, 2002
Scaling the Supply Voltage
2.5
0.2
2
Vout (V)
Vout (V)
0.15
1.5
1
0.1
0.05
0.5
Gain=-1
0
0
0
0.5
1
1.5
Vin (V)
Device threshold voltages are
kept (virtually) constant
CSE477 L04 CMOS Inverter.22
2
2.5
0
0.05
0.1
0.15
0.2
Vin (V)
Device threshold voltages are
kept (virtually) constant
Irwin&Vijay, PSU, 2002
Related documents