Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
ECE484 VLSI Digital Circuits Fall 2010 Lecture 04: CMOS Inverter (static view) Mary Jane Irwin ( www.cse.psu.edu/~mji ) www.cse.psu.edu/~cg477 Modified by Dr. George Engel (SIUE) [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.] CSE477 L04 CMOS Inverter.1 Irwin&Vijay, PSU, 2002 CMOS Inverter: A First Look VDD Vin Vout CL CSE477 L04 CMOS Inverter.2 Irwin&Vijay, PSU, 2002 CMOS Inverter: Steady State Response VDD VDD VOL = 0 VOH = VDD VM = f(Rn, Rp) Rp Vout = 1 Vout = 0 Rn Vin = 0 CSE477 L04 CMOS Inverter.3 Vin = V DD Irwin&Vijay, PSU, 2002 CMOS Properties Full rail-to-rail swing high noise margins Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to Vdd or GND in steady state low output impedance (output resistance in k range) large fan-out (albeit with degraded performance) Extremely high input resistance (gate of MOS transistor is near perfect insulator) nearly zero steady-state input current No direct path steady-state between power and ground no static power dissipation Propagation delay function of load capacitance and resistance of transistors CSE477 L04 CMOS Inverter.4 Irwin&Vijay, PSU, 2002 Review: Short Channel I-V Plot (NMOS) X 10-4 2.5 VGS = 2.5V 2 VGS = 2.0V 1.5 1 VGS = 1.5V 0.5 VGS = 1.0V 0 0 0.5 1 1.5 2 2.5 VDS (V) NMOS transistor, 0.25um, Ld = 0.25um, W/L = 1.5, VDD = 2.5V, VT = 0.4V CSE477 L04 CMOS Inverter.5 Irwin&Vijay, PSU, 2002 Review: Short Channel I-V Plot (PMOS) All polarities of all voltages and currents are reversed -2 VDS (V) -1 0 0 VGS = -1.0V -0.2 VGS = -1.5V -0.4 -0.6 VGS = -2.0V -0.8 VGS = -2.5V -1 X 10-4 PMOS transistor, 0.25um, Ld = 0.25um, W/L = 1.5, VDD = 2.5V, VT = -0.4V CSE477 L04 CMOS Inverter.6 Irwin&Vijay, PSU, 2002 Transforming PMOS I-V Lines Want common coordinate set Vin, Vout, and IDn IDn IDSp = -IDSn VGSn = Vin ; VGSp = Vin - VDD VDSn = Vout ; VDSp = Vout - VDD Vout Vin = 0 Vin = 0 Vin = 1.5 Vin = 1.5 VGSp = -1 VGSp = -2.5 CSE477 L04 CMOS Inverter.7 Mirror around x-axis Vin = VDD + VGSp IDn = -IDp Horiz. shift over VDD Vout = VDD + VDSp Irwin&Vijay, PSU, 2002 CMOS Inverter Load Lines PMOS 2.5 NMOS X 10-4 Vin = 0V Vin = 2.5V 2 Vin = 0.5V Vin = 2.0V 1.5 Vin = 1.0V 1 Vin = 2V 0.5 Vin = 1V Vin = 1.5V Vin = 1.5V Vin = 0.5V Vin = 1.5V Vin = 1.0V Vin = 2.0V Vin = 0.5V 0 Vin = 2.5V 0 0.5 1 1.5 Vout (V) 2 2.5 Vin = 0V 0.25um, W/Ln = 1.5, W/Lp = 4.5, VDD = 2.5V, VTn = 0.4V, VTp = -0.4V CSE477 L04 CMOS Inverter.8 Irwin&Vijay, PSU, 2002 CMOS Inverter VTC NMOS off PMOS res 2.5 NMOS sat PMOS res Vout (V) 2 1.5 NMOS sat PMOS sat 1 NMOS res PMOS sat 0.5 NMOS res PMOS off 0 0 0.5 1 1.5 2 2.5 Vin (V) CSE477 L04 CMOS Inverter.10 Irwin&Vijay, PSU, 2002 CMOS Inverter: Switch Model of Dynamic Behavior VDD VDD Rp Vout Vout CL Vin = 0 CL Rn Vin = V DD Gate response time is determined by the time to charge CL through Rp (discharge CL through Rn) CSE477 L04 CMOS Inverter.12 Irwin&Vijay, PSU, 2002 Relative Transistor Sizing When designing static CMOS circuits, balance the driving strengths of the transistors by making the PMOS section wider than the NMOS section to CSE477 L04 CMOS Inverter.13 maximize the noise margins and obtain symmetrical characteristics Irwin&Vijay, PSU, 2002 Switching Threshold VM where Vin = Vout (both PMOS and NMOS in saturation since VDS = VGS) VM rVDD/(1 + r) where r = kpVDSATp/knVDSATn Switching threshold set by the ratio r, which compares the relative driving strengths of the PMOS and NMOS transistors Want VM = VDD/2 (to have comparable high and low noise margins), so want r 1 (W/L)p = kn’VDSATn(VM-VTn-VDSATn/2) (W/L)n kp’VDSATp(VDD-VM+VTp+VDSATp/2) CSE477 L04 CMOS Inverter.14 Irwin&Vijay, PSU, 2002 Switch Threshold Example In our generic 0.25 micron CMOS process, using the process parameters from slide L03.25, a VDD = 2.5V, and a minimum size NMOS device ((W/L)n of 1.5) NMOS PMOS VT0(V) 0.43 -0.4 (V0.5) 0.4 -0.4 VDSAT(V) 0.63 -1 (V-1) 0.06 -0.1 k’(A/V2) 115 x 10-6 -30 x 10-6 (W/L)p 115 x 10-6 0.63 (1.25 – 0.43 – 0.63/2) = (W/L)n x -30 x 10-6 x -1.0 (1.25 – 0.4 – 1.0/2) = 3.5 (W/L)p = 3.5 x 1.5 = 5.25 for a VM of 1.25V CSE477 L04 CMOS Inverter.16 Irwin&Vijay, PSU, 2002 Simulated Inverter VM VM is relatively insensitive to variations in device ratio 1.5 1.4 1.3 setting the ratio to 3, 2.5 and 2 gives VM’s of 1.22V, 1.18V, and 1.13V 1.2 1.1 Increasing the width of the PMOS moves VM towards VDD 1 0.9 0.8 0.1 1 (W/L)p/(W/L)n Note: x-axis is semilog CSE477 L04 CMOS Inverter.17 ~3.4 10 Increasing the width of the NMOS moves VM toward GND Irwin&Vijay, PSU, 2002 Noise Margins Determining VIH and VIL By definition, VIH and VIL are where dVout/dVin = -1 (= gain) 3 VOH = VDD NMH = VDD - VIH NML = VIL - GND 2 VM Approximating: VIH = VM - VM /g VIL = VM + (VDD - VM )/g 1 VOL = GND0 VIL Vin VIH A piece-wise linear approximation of VTC CSE477 L04 CMOS Inverter.18 So high gain in the transition region is very desirable Irwin&Vijay, PSU, 2002 CMOS Inverter VTC from Simulation 0.25um, (W/L)p/(W/L)n = 3.4 (W/L)n = 1.5 (min size) VDD = 2.5V 2.5 Vout (V) 2 VM 1.25V, g = -27.5 1.5 VIL = 1.2V, VIH = 1.3V NML = NMH = 1.2 (actual values are VIL = 1.03V, VIH = 1.45V NML = 1.03V & NMH = 1.05V) 1 0.5 0 0 0.5 1 Vin (V) CSE477 L04 CMOS Inverter.19 1.5 2 2.5 Output resistance low-output = 2.4k high-output = 3.3k Irwin&Vijay, PSU, 2002 Gain Determinates Vin 0 0.5 1 0 -2 -4 -6 -8 1.5 2 Gain is a strong function of the slopes of the currents in the saturation region, for Vin = VM (1+r) g ---------------------------------(VM-VTn-VDSATn/2)(n - p ) -10 -12 -14 -16 -18 CSE477 L04 CMOS Inverter.20 Determined by technology parameters, especially channel length modulation (). Only designer influence through supply voltage and VM (transistor sizing). Irwin&Vijay, PSU, 2002 Impact of Process Variation on VTC Curve 2.5 Good PMOS Bad NMOS Vout (V) 2 1.5 Nominal 1 Bad PMOS Good NMOS 0.5 0 0 0.5 1 1.5 2 2.5 Vin (V) Process variations (mostly) cause a shift in the switching threshold CSE477 L04 CMOS Inverter.21 Irwin&Vijay, PSU, 2002 Scaling the Supply Voltage 2.5 0.2 2 Vout (V) Vout (V) 0.15 1.5 1 0.1 0.05 0.5 Gain=-1 0 0 0 0.5 1 1.5 Vin (V) Device threshold voltages are kept (virtually) constant CSE477 L04 CMOS Inverter.22 2 2.5 0 0.05 0.1 0.15 0.2 Vin (V) Device threshold voltages are kept (virtually) constant Irwin&Vijay, PSU, 2002