Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Receiver TDP Report to US SKA Consortium May 22, 2008 Sandy Weinreb, Joe Bardin, Glenn Jones, and Hamdi Mani California Institute of Technology [email protected] • Work Statement • 2008 Telescope Tests – GAVRT 34m • Noise Temperature Budget • LNA Status • Feed Integration Caltech TDP Work Statement • Quad-Ridge Feeds – As one robust candidate for SKA wideband feeds, develop the quad-ridge feed. • 0.3-1.7 GHz Receiver – A low cost, very low noise receiver covering this frequency range will be developed over a 4-year period utilizing either a quad-ridge feed or other wideband feeds being developed by others. • 1-11 GHz Receiver - A low cost, very low noise receiver covering this frequency range will be developed over a 4-year period utilizing a selected feed. The task includes design, packaging, and testing of integrated circuit LNA’s • 11-25 GHz Receiver - A low noise receiver covering this high frequency range will be developed over a 3-year starting in 2009. It is not clear at this time whether the receiver can be included as part of the 1-11 GHz system or if the SKA antenna will support higher frequencies. • IF/LO Development - Experience with EVLA has shown that a large portion of the receiver cost is in the wide bandwidth frequency conversion, local oscillator distribution, optical fiber transducers, and A/D conversion. The goal of this work element is to drastically reduce the cost of these functions by development of large scale microwave integrated circuits SKA Tsys Budget – Current and Expected 2010 2007 2010 Component Current Technology Noise, K, 1.4 GHz Innovation Path Noise, K, 1.4GHz Sky Background + atmosphere 4 No improvement here! 4 Spillover & Blockage 15 dB edge taper + 2.5% blockage, total 4% at 300K 12 Mesh skirt for 20 dB taper, reduce blockage to 2% 7 Feed loss 10cm of .085”, 7K + 5K feed loss 12 Twin-lead feed terminals 5 LNA to feed loss 10cm of 0.141 Cu coax bend to dewar, .04 dB at 300K 3 40mm twin-lead 2 Vacuum feedthru Glass/Kovar bead, 0.1 dB 7 Quartz/gold bead, 0.04 dB 3 10cm or .141 SS/BeCu .09 dB at 190K 4 Air line 2 Coupler at 70K Werlatone C7753, 0.2 dB 3 or noise lamp coupling 2 Total Total Above 45 Total Above 25 LNA @ 300K Commercial 0.5 to 4 GHz LNA 60 Improved LNA @ 300K 15 LNA @ 60K Current LNA 14 Improved 70K LNA 5 Coax in dewar Total Tsys, 300KLNA 105 Total Tsys, LNA @ 300K 40 Total Tsys, 60K LNA 59 Total Tsys. 60K LNA 30 Wideband Receivers for Tests on 34m GAVRT Telescope Goal: Efficiency and Tsys Measurements by Sept 2008 4 to 14 GHz Receiver 0.5 to 4 GHz Receiver < 35K Tsys LNA+Feed Quadridge Feed and Long-Life 50K Cooler Low-Cost SiGe 0.5 to 4 GHz Cryogenic LNA • 7K noise at 17K with $.44 NXP transistor • With STM transistor input stage noise is 2.5K at 17K, and 7K at 55K. 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 40 35 30 25 20 15 Noise, 1.7V, 10mA 10 Gain, 1.7V, 10mA 5 Gain, dB Noise, K NXP BFU 725 2 stage LNA @17K April 15, 2008 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 GHz SiGe transistors in 2mm plastic package on printed circuit board SKA Wideband Feeds Need Differential LNA’s Caltech will Integrate other candidate feeds with LNA’s and cryogenics - a crucial step for low Tsys and robust operation Output coax Input Twin-Lead Lines Active Balun (Differential) LNA for ATA Differential SiGe LNA Designed for SKA On IBM 8HP SiGe BiCMOS Wafer due July, 2008 Example of 5 x 5 mm multi-project die processed by IBM S21 Te S11 S22 5/01/2008 7 SiGe HBT Technology Cross-Section Photo reproduced from: http://users.ece.gatech.edu/~cressler/ A 0.5-20GHz Quadrature Downconverter This chip has been designed and tested by J. Bardin at Caltech with fabrication in the IBM 8HP SiGe process. It provides highly accurate quadrature mixers over an unusually large bandwidth A RF D I LPF LNA LO Q DSP A D LO Chip size 1.5 x 1.7 mm Measured image rejection is 50 dB from .5 to 12 GHz Downconverter LPF Publications and Reports S. Weinreb, J.C. Bardin, and H. Mani, “Design of Cryogenic SiGe LowNoise Amplifiers,” IEEE Transactions on Microwave Theory and Techniques, Vol. 55, pp.2306-2311, Nov. 2007. J.C. Bardin and S. Weinreb, “Experimental Modeling and Noise of SiGe HBTs,” to be published Proc. IEEE International Microwave Symposium, IMS, Atlanta, GA, June 16-19, 2008. J.C. Bardin and S. Weinreb, “A 0.5-20GHz Quadrature Downconverter,” to be published IEEE Bipolar/BiCMOS Circuits and Technology Meeting, BCTM2008, Monterey, CA, Oct 13-16, 2008. For seminars and internal reports see http://radiometer.caltech.edu