Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Miscellaneous “Hot” Topics Topics Molecular Electronics Photonic Crystals Spintronics* *Sorry, there is no time for this! Molecular Electronics Artist’s Depiction of a Long Molecule Between Metal Contacts Molecular Electronics From Wikipedia: “Molecular Electronics (sometimes called moletronics) involves the study & application of molecular building blocks for the fabrication of electronic components. This includes both passive & active electronic components. Molecular electronics is a branch of nanotechology.” Wikipedia Continued “An interdisciplinary pursuit, molecular electronics spans physics, chemistry, and materials science. The unifying feature is the use of molecular building blocks for the fabrication of electronic components. This includes both passive (e.g. resistive wires) and active components such as transistors and molecular-scale switches. Due to the prospect of size reduction in electronics offered by molecular-level control of properties, molecular electronics has aroused much excitement both in science fiction and among scientists. Molecular electronics provides means to extend “Moore's Law” beyond the foreseen limits of smallscale conventional silicon integrated circuits. • Molecular electronics is split into two related but separate subdisciplines: 1. Molecular Materials for Electronics: Utilizes the properties of the molecules to affect the bulk properties of a material. 2. Molecular scale electronics: Focuses on single-molecule applications. Prophecies of the Future of Technology are Risky, Even if Made by Very Intelligent, Educated people!! For example consider some “memorable quotes” from perhaps Typical “Fortune Teller” or “Psychic" The Greatest Scientist of the 19th Century: Lord Kelvin (William Thompson) “Heavier-than-air flying machines are impossible.” (1895) “I have not the smallest molecule of faith in aerial navigation other than ballooning...I do not care to be a member of the Aeronautical Society.” (1896) “There is nothing new to be discovered in physics. All that remains is more precise measurement.” (1900) Another 19th Century Example “Everything that can be invented has been invented.” Charles H. Duell, Commissioner U.S. Office of Patents, 1899 More Prophecies of the Future of Technology! • More examples of the risk in predicting the future: Some quotes from the 20th Century: “There is not the slightest indication that nuclear energy will ever be obtainable.” Albert Einstein, Nobel Laureate. One of the greatest scientists who ever lived! “I think there is a world market for maybe five computers.” T.J. Watson, President & CEO, IBM Corporation, 1941-1956 “There is no reason anyone would want a computer in their home.” Ken Olson, co-Founder, Digital Equipment Corporation (DEC) “640K of computer memory ought to be enough for everybody!” Bill Gates, co-Founder, Microsoft Corporation. One of the wealthiest men in the world. More 20th Century Examples “Computers in the future may weigh no more than 1.5 tons.” The Magazine Popular Mechanics, 1949 “I have traveled the length and breadth of this country and talked with the best people, and I can assure you that data processing is a fad that won't last out the year.” Business book editor, Prentice Hall, 1957 More 20th Century Examples “I believe OS/2 is destined to be the most important operating system, and possibly program, of all time”. Bill Gates, 1987 “.. and it probably never will support anything other than AT-hard disks, ..” Linus Torvalds in his Linux release note from August 26, 1991 More 20th Century Examples “Windows NT addresses 2 Gigabytes of RAM, which is more than any application will ever need. .” Microsoft on the development of Windows NT, 1992 “.. and it probably never will support anything other than AT-hard disks, ..” Linus Torvalds in his Linux release note from August 26, 1991 Moore’s “Law” • The number of transistors that can be fabricated on a silicon integrated circuit--and therefore the computing speed of such a circuit--is doubling every 18 to 24 months. • After 4 decades, solid-state microelectronics has advanced to the point at which more than 100 million transistors, with feature size around 120 nm can be put onto a few square centimeters of silicon. Smaller, Denser, Cheaper Electronics Moore’s “Law” (1965) Every 1.5 years the number of transistors on a chip is doubled. Does this mean that there could be a transistor the size of a single-atom by 2020? Silicon & Moore’s Law: Practical Problems • Heat dissipation. – At present, a state-of-the-art a 500 MHz microprocessor with 10 million transistors emits almost 100 watts--more heat than a stovetop cooking surface! • Leakage from one device to another. – The band structure in silicon provides a wide range of allowable electron energies. Some electrons can gain sufficient energy to hop from one device to another, especially when they are closely packed. • Capacitive coupling between components. • Fabrication methods (Photolithography). – Device size is limited by diffraction to about one half the wavelength of the light used in the lithographic process. • “Silicon Wall” – At 50 nm & smaller it’s not possible to dope silicon uniformly. Conclusion: This is the end of the line for bulk behavior!! Related to Moore’s “Law” is Moore’s “Second Law.” X 1000$ Moore’s 2nd “Law” is a financial “law”! Plant Cost Billions of Dollars!! Mask Cost Silicon & Moore’s Law Moore’s “Second Law” • Continued exponential decrease in silicon device size is achieved by a continuing exponential increase in financial investment. An estimated cost for a fabrication facility by 2015 is $200 billion!!!!! • In addition, transistor densities achievable under the present & foreseeable silicon format are not sufficient to allow microprocessors to do the things imagined for them. Nearing the End of Moore's Law So far, history has proved Gordon Moore more or less right. But transistor growth may soon slow for a number of reasons: Difficulties to contend with the heat produced and power consumed by transistor-crammed chips Photolithography as we know it is expected to reach its ultimate limits before 2020 Chip voltages cannot be reduced forever The Limits of Silicon Technology Still in 2002 Intel's chief technology officer Pat Gelsinger said, "We're on track, by 2010, for 30gigahertz devices, 10 nanometers or less, delivering a tera-instruction of performance." But Gelsinger was wrong. By 2010 Intel and its competitors were making processors that topped out at less than four gigahertz, and 22 nm had only reached the design lab. Hope for Moore's Law in New Technologies? Miniaturization of integrated circuits based on photolithography may soon come to an end. However, new technologies have emerged that may push miniaturization to the nanoscale. On the forefront are memristors and graphene. In 2011 the first quantum computer was announced and shortly after researchers at Single-Atom Transistor Miniaturization reached its ultimate limit in February 2012, when scientists at University of New South Wales, Australia, reported having created a single-atom transistor – at least under the eye of a scanning tunneling microscope. It is a phosphorous atom that has replaced a silicon atom in a group of six, and which acts Death to Moore's Law! Despite impressive progress in hardware technology, there are alternatives that should be considered. Steve Wozniak, the inventor of the Apple II, once said: "The repeal of Moore's Law would create a renaissance for software development. Only then will we finally be able to create software that will run on a stable and enduring platform." Finally: An Accurate Statement ”Bill Gates is a very rich man today ... and do you want to know why? The answer is one word: versions.” Dave Barry Welcome Windows 1, 2, 3, NT, 95, 98, 2000, ME, Xp, Vista, 7, 8. We’re so happy to pay for all of you! Electronics Development Strategies Top-Down • Continued reduction in size of bulk semiconductor devices. Bottom-Up Molecular Scale Electronics • Design of molecules with specific electronic functions. • Design of molecules for self assembly into supramolecular structures with specific electronic functions. • Connecting molecules to the macroscopic world. Bottom-Up: Why Molecules? • Molecules are small. – With transistor size at 180 nm on a side, molecules are some 30,000 times smaller. • Electrons are confined in molecules. – Whereas electrons moving in silicon have many possible energies that will facilitate jumping from device to device, electron energies in molecules and atoms are quantized - there is a discrete number of allowable energies. • Molecules have extended pi systems. – Provides thermodynamically favorable electron conduit - molecules act as wires. • Molecules are flexible. – pi conjugation and therefore conduction can be switched on and off by changing molecular conformation providing potential control over electron flow. • Molecules are identical. – Can be fabricated defect-free in enormous numbers. • Some molecules can self-assemble. – Can create large arrays of identical devices. Molecules as Electronic Devices Historical Perspective 1950’s: Inorganic Semiconductors • To make p-doped material, one dopes Group IV (14) elements (Si, Ge) with electron-poor Group III elements (Al, Ga, In) • To make n-doped material, one uses electron-rich dopants such as the Group V elements N, P, As. 1960’s: Organic Equivalents • Inorganic semiconductors have their organic molecular counterparts. Molecules can be designed so as to be electron-rich donors (D) or electronpoor acceptors (A). • Joining micron-thick films of D and A yields an organic rectifier (unidirectional current) that is equivalent to an inorganic pn rectifier. • Organic charge-transfer crystals and conducting polymers yielded organic equivalents of a variety of inorganic electronic systems: semiconductors, metals, superconductors, batteries, etc. BUT: Organic semiconductors weren’t as good as the inorganic standards (more expensive & less efficient) 1970’s: Single Molecule Devices In the 1970’s organic synthetic techniques start to grow up prompting the idea that device function can be combined into a single molecule. Aviram and Ratner suggest a molecular scale rectifier. (Chem. Phys. Lett. 1974) But, no consideration as to how this molecule would be incorporated into a circuit or device. 1980’s Single Molecule Detection. How to image at the molecular level. How to manipulate at the molecular level. Scanning Probe Microsopy. STM (IBM Switzerland, 1984) AFM 1990’s: Single Molecule Devices • New imaging and manipulation techniques • Advanced synthetic and characterization techniques • Advances in Self-Assembly »» Macroscopic/Supramolecular Chemistry These developments have finally allowed scientists to address the question: “How can molecules be synthesized and assembled into structures that function in the same way as solid state silicon electronic devices and how can these structures be integrated with the macroscopic regime?” Molecular Junction Mechanically-Controlled Break Junction Resistance is a few megohms. (Schottky Barrier) Resonant Tunneling Diode Alkyl Tunnel Barriers Conduction between the two ends of the molecule depends on pi orbital overlap which in turn relies on a planar arrangement of the phenyl rings. Negative Differential Resistance mNDR = molecular Negative Differential Resistance Measured using a conducting AFM tip One electron reduction provides a charge carrier. A second reduction blocks conduction. Therefore, conduction occurs only between the two reduction potentials. Voltage-Driven Conductivity Switch Applied perpendicular field favors zwitterionic structure which is planar Better pi overlap, better conductivity. Dynamic Random Access Memory Voltage pulse yields high conductivity State - data bit stored Bit is read as high in low voltage region Voltage-Driven Conductivity Switch Device is fabricated by sandwiching a layer of catenane between an polycrystalline layer of n-doped silicon electrode and a metal electrode. The switch is opened at +2 V, closed at -2 V and read at 0.1 V. Voltage-Driven Conductivity Switch High/Low Conductivity Switching Devices Respond to I/V Changes Voltage-Driven Conductivity Switch n-type Molecular Wire Crossbar Interconnect (MWCB) Carbon Nanotubes Gentle contact needed Nanotube conductivity is quantized. Nanotubes found to conduct current ballistically and do not dissipate heat. Nanotubes are typically 15 nanometers wide and 4 micrometers long. Molecular Self-Assembly • Self-Assembly on Metals – (e.g., organo-sulfur compounds on gold) • Assembly LangmuirBlodgett Films – Requires amphiphilic groups for assembly • Carbon Nanotubes – Controlling structure Cyclic Peptide Nanotubes as Scaffolds for Conducting Devices Hydrogen-bonding interactions promote stacking of cyclic peptides Pi-systems stack face-to-face to allow conduction along the length of the tube Cooper and McGimpsey - to be submitted CYCLIC BIOSYSTEMS Spontaneous self-directed chemical growth allowing parallel fabrication of identical complex functional structures. Molecular Electronics: Measuring single molecule conduction Nanopore Cross-wire STM Break Junction Scanning Probe Cui et al. Science 294 (2001) 571 Wang et al. PRB 68 (2003) 035416 Kushmerick et al. PRL 89 (2002) 086802 Electromigration H. S. J. van der Zant et al. Faraday Discuss. (2006) 131, 347 B. Xu & N. J. Tao Science (2003) 301, 1221 Nanocluster Mechanical Break Junction Dadosh et al. Nature 436 (2005) 677 Reichert et al. PRL 88 176804 Single-Molecule Conductivity L ELECTRODE MOLECULE R ELECTRODE L ELECTRODE MOLECULE R ELECTRODE Molecular Orbitals Fermi energy L ELECTRODE MOLECULE R ELECTRODE Molecular Orbitals eV I V I Finding a true molecular signature: Inelastic Electron Tunnelling Spectroscopy (IETS) Inelastic h/e V 2 h/e 2 V d I/dV Elastic dI/dV h/e V h/e V Molecular level structure between electrodes energy LUMO HOMO Cui et al (Lindsay), Science 294, 571 (2001) “The resistance of a single octanedithiol molecule was 900 50 megaohms, based on measurements on more than 1000 single molecules. In contrast, nonbonded contacts to octanethiol monolayers were at least four orders of magnitude more resistive, less reproducible, and had a different voltage dependence, demonstrating that the measurement of intrinsic molecular properties requires chemically bonded contacts”. 6 I / arb. units I Ratner and Troisi, 2004 5 4 3 2 1 0 -1 -1 - 0.5 -0.5 0.0 0 0.5 0.5 1 V (V) Dynamics of current voltage switching response of single bipyridyl-dinitro oligophenylene ethynylene dithiol (BPDN-DT) molecules between gold contacts. In A and B the voltage is changed relatively slowly and bistability give rise to telegraphic switching noise. When voltage changes more rapidly (C) bistability is manifested by hysteretic behavior Lortscher et al (Riel), Small, 2, 973 (2006) Switching with light Chem. Commun., 2006, 3597 - 3599, DOI: 10.1039/b609119a Uni- and bi-directional light-induced switching of diarylethenes on gold nanoparticles Tibor Kudernac, Sense Jan van der Molen, Bart J. van Wees and Ben L. Feringa “In conclusion, photochromic behavior of diarylethenes directly linked to gold nanoparticles via an aromatic spacer has been investigated. Depending on the spacer, uni- (3) or bidirectionality (1,2) has been observed.” Nanotechnology 16 (2005) 695–702 Switching of a photochromic molecule on gold electrodes: single-molecule measurements J. He, F. Chen, P. Liddell, J. Andr´easson, S D Straight, D. Gust, T. A. Moore, A. L. Moore, J. Li, O. F Sankey and S. M. Lindsay Current–voltage data (open circles) for (a) open molecules 1o and (b) closed molecules 1c Temperature and chain length dependence MichelBeyerle et al Selzer et al 2004 Giese et al, 2002 Xue and Ratner 2003 Electron transfer in DNA DNA-news-1 DNA-news-4 DNA-news-2 Conjugated vs. Saturated Molecules: Importance of Contact Bonding S S S S Au// S/Au Au/S S/Au Kushmerick et al., PRL (2002) negative bias Positive bias 2- vs. 1-side Au-S bonded conjugated system gives at most 1 order of magnitude current increase compared to 3 orders for C alkanes! Au/S(CH2)8SAu Au//CH3(CH2)7S/Au Lindsay & Ratner 2007 Where does the potential bias falls, and how? •Image effect •Electron-electron interaction (on the Hartree level) Vacuum Excess electron density L Xue, Ratner (2003) Potential profile Galperin et al JCP 2003 Galperin et al 2003 Experiment Theoretical Model Experimental i/V behavior Experimental (Sek&Majda) junction aCurrent Ratio of current: i(-1.0 V)/i(+1.0 V)a Hg-SC12/C12S-Au 0.98 0.13 Hg-SC12/C10S-Au 1.03 0.07 Hg-SC16/C12S-Au 1.22 0.16 Hg-SC12/C9S-Au 1.44 0.20 Hg-SC16/C10S-Au 1.34 0.19 Hg-SC16/C9S-Au 2.03 0.27 at the negative bias refers to the measurement with the Hg side of the junction biased negative relative to the Au side. Cui et al (Science 2001): The sulfur atoms (red dots) of octanethiols bind to a sheet of gold atoms (yellow dots), and the octyl chains (black dots) form a monolayer. The second sulfur atom of a 1,8-octanedithiol molecule inserted into the monolayer binds to a gold nanoparticle, which in turn is contacted by the gold tip of the conducting AFM. J. G. Kushmerick et al., Nano Lett. 3, 897 (2003). A. S. Blum, J. G. Kushmerick, et al., The J. Phys. Chem. B 108, 18124 (2004). Red – single molecule; black – molecular layer. Dashed black is molecular layer per molecule 1-nitro-2,5-di(phenylethynyl4’-mercapto)benzene Red – single molecule; black – molecular layer per molecule Y. Selzer et al., Nano Letters 5, 61 (2005). Resonant tunneling? V(x) |1> L R .... |0> x r l 1 {l } V1l V1r Carbon Nano Tubes (CNT) Issues: •Production of Single Walled CNTs yield a mixture of types (dimensions to less than 1nm) • • Metallic Semiconductive •Separation of types is time consuming Benefits: •Novel electronic devices •High temperature applications •Improved microscopy Potential Solutions •Continue development efforts Solar Cells (Organic) Issues: •Efficiencies •Material development •Manufacturing processes Potential Solutions •Development of organic plastics with improved efficiency •Development of adsorptive dyes •Flexible conductors •Enhanced property covering material Benefits: •Low cost energy •Inexpensive to manufacture yielding to wide spread applications Credit: Nicole Cappello and the Georgia Institute of Technology New Material Properties Issues: •Unanticipated properties are being found in nano materials – Example: • • Potential Solutions: •Quantify and classify the material properties in the range between bulk material properties and quantum phenomena •Establish a program to employ theoretical projections to verify experimental data Thirteen atoms of Silver have been shown theoretically to be magnetic Thirteen atoms of Platinum have been experimentally shown to be magnetic Benefits: •Improve the time to develop nano based devices, due to eliminating the duplication of research efforts •Creation of new products based on applying novel nano properties Example: The creation of new memory devices that are 100x more dense than current technology Silver properties reported May 30, 2006 in NanoTechWeb Platinum experiments reported by University of Stuttgart Metrology Au dot structure & Nanowire Twinning Potential Solutions: •New solutions for metrology •Enhancements to equipment •New technologies Aberration Corrected HR-TEM Korgel Group Si Nanowire Issues: •Imaging realm is at limits of resolution, in the 1nm range •Time per image is long >one hour •Effective imaging applications require multiple images in minutes or less Benefits: •Improved resolution of material properties •Capability to employ in manufacturing processes •If one can not measure something, it can not be manufactured Metrology Aberration Corrected TEM Imaging Corrected Not corrected K & I in nanotube Potential Solutions •Development and execution of validation plan •Improved algorithms •Improved equipment for rapid imaging Sloan, et al., MRS Bulletin, April 2004 Issues: •Imaging is slow and computations are time consuming •Unique structures can not be verified •No validation results •Dimensions extend to below 1nm Benefits: •Improved understanding of materials •Ability to identify unique nano structures •Ability to create and verify novel materials Proposal for Molecular Computers Nanotechnology + cheap + high-density + low-power – unreliable Reconfigurable Computing + defect tolerant + high performance – low density _ _ _ ++++ + + _ Computer architecture + vast body of knowledge – expensive – high-power Reconfigurable Computing • Back to ENIAC-style computing • Synthesize one machine to solve one problem Defect Tolerance Despite having >70% of the chips defective, Teramac works flawlessly. Compilation has two phases: • defect detection through self-testing • placement for defect-avoidance Single-walled Carbon Nanotube d d = 0.4nm - 10nm L=? L Lattice of covalently bonded carbon atoms Nano-wires • carbon nanotubues, Si, metal • >2nm diameter, up to mm length • excellent electrical properties A carbon nanotube: one molecule Independent Claims 1. A transistor that uses a carbon nanotube ring as a semiconductor material, the carbon nanotube ring having semiconductor characteristics. 12. A transistor that uses a carbon nanotube ring as an electrode material, the carbon nanotube ring having conductivity or semiconductor characteristics. 18. A carbon nanotube ring having p-type semiconductor characteristics. 19. A semiconductor device in which a carbon nanotube ring having p-type semiconductor characteristics is placed on an n-type semiconductor substrate thereof. Nanotechnology in Electronics Alternatives for transistors Carbon nanotube transistors Single electron transistors (SET) Memory devices MRAM (various different approaches Phase change RAM Photonics Nano-electromechanical system (NEMS) Fuel cells Thermo-photovoltaics Quantum computers Software Nano-switch Nano-switch Between Nano-wires Self-assembly