Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
What happened to computing 1930-80 is now happening to biology Friden mechanical calculator: 1930-1966 Friden electronic calculator: 1965 Intel 4004 mproc: 1971 Sharp single chip calculator: 1977 What happened to computing 1930-80 is now happening to biology % cells damaged by transfection Pre-2000 Proportion of cells transfected - Example: electroporation The complete protocol Today Tomorrow Another example: automated parallel mini-preps The geek shall inherit (systems) biology Pathway/ interaction DBs / literature cell-specific, comprehensive, kinetic and quantitative data Computation Biology Technology data analysis experiments to test hypotheses experimental planning model construction model analysis hypothesis formulation 2 complementary approaches in systems biology: Top-down, global, systematic Bottom-up, local dynamics • • Focus on nonlinear interactions • Study irreducible systems • Analyzing emergent (difficult-topredict, nonlinear) properties • Hypothesis and model-driven • Discovery science via high throughput ‘omic technologies Screening - multi-target/multi-component drugs - multi-parameter disease signatures • Observation & data-driven global climate local weather The yeast galactose utilization pathway – bottom up view Galactose Gal2p (transporter) + feedback Gal3p Gal1p (kinase) Galactose Galactose 1-phosphate + feedback Gal3p* UDP-galactose Gal7p (transferase) Gal10p (epimerase) Gal80p - feedback Gal4p UDP- glucose Gal80 de Atauri et al Biochem J. 2005 Glucose 1-phosphate Gal4p UGP1 PGM1 PGM2 GPH1 GSY1 GSY2 TPS1 TSL1 TPS3 GSC2 FKS1 FKS3 Gal3 Gal4p Gal2 1,3-â-Glucan Gal4p Threhalose synthesis Glucose 6-phosphate Glycogen synthesis Gal 1,7,10 The yeast galactose utilization pathway – top down view How do we make sense of this? A network graph viewed in Cytoscape; what does it do? An Exclusive OR gate out = XOR • in1 in2 1 • 4 out 3 2 in1 in2 NOR 1 NAND 2 NOT 3 NOR 4 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 T1 2 • in1 in2 Vdd • T5 • . T2 3 T3 T4 • T11 T6 4 • • • T7 5 T8 T9 T10 6 • • 7 T12 8 • out = XOR T13 T14 Gnd 0 NOR (1) NAND (2) NOT (3) NOR (4) “Guilt by association” network analysis Phagocytosis Fas Cell adhesion Translation Actin polymerization mRNA stability p38 pathway Red nodes: down-regulated Green nodes: up-regulated Transfac/HPRD/in-house documented P-P interaction Transfac documented P-DNA interaction Network motifs & functional building blocks Ecoli sea urchin functional building blocks Nonlinear switch Unidirectional switch Bolouri & Davidson BioEssays 2002 Community effect yeast Uri Alon & colleagues Rick Young & colleagues Regulated &/or rapid response Cannot guess function from topology alone Network topology: 1 • in1 in2 T1 2 • . T5 • T2 T3 T4 • T11 T6 • • • 7 T12 T9 • • T10 5 T8 • • T13 T14 0 equivalent network motifs/modules select1 select2 • • T13 7 T12 A T11 Possible (mis)interpretation: B A if (select1=on & select2=on) Network motifs have many additional inputs and interactions A topological motif may implement different functions The feed forward motif: Alon & colleagues, Nature Genetics, 2002. 31(1): p. 64-8 see also: A coherent feedforward motif acting as a gradient sensor Need a functional abstraction hierarchy Potential genetic regulatory functional building blocks (D) (A) (E) (F) (B) (C) (g) BioTapestry.org At steady state: PSS Otx = (ks/kdp).mRNA mRNASS= (kt/kdm).Y GataE mRNA Kdiss mRNAss Pss P kt.ks/2.kdm.kdp GCM Potential genetic regulatory functional building blocks (D) (A) (E) (F) (B) (C) (g) (1) (2) positive driver (3) positive intercellular feedback blue gene activity level b-catenin/Wnt8 ‘Community Effect’ filters out expression variability _ cell 1 _ cell 2 _ cell 3 cell 1 driver gene cell type specific gene battery Simulated time cb c Cells in a reinforcing loop - all cells in group adopt same fate - sharp boundary between cell types - insensitive to level of “driver” GSK-3 Nb-TCF frizzled Krox Wnt8 Intercellular positive feedback: The community effect Gurdon ‘88, Nature, 336, 772-4 Data from Davidson lab Potential genetic regulatory functional building blocks (D) (A) (E) (F) (B) (C) (g) Intracellular negative feedback x See also Ashburner et al 1973-1981 (see Cell, 1990. 61(1):1-3) (A) tuned for regulated level (B) single transcriptional pulse (C) tuned for rapid response FoxA (D) tuned for long lasting oscillation Potential genetic regulatory functional building blocks (D) (A) (E) (F) (B) (C) (g) Cell 2 (anterior) Cell 1 (posterior) Su(Fu) Fu Smo::Cos2 Wnt Ci::Su(Fu) Smo CiA CiR Cos2::GSK3b Smo_I Ptc Nkd Dlp Ptc: :Hh Hh pathway 6000 5000 4000 3000 DshA 2000 DshA2 En 1000 En2 0 1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 u Hh Slp En Ci TCF TCF Wnt pathway Mutual exclusion in a mammalian adult cell specification process Mutual exclusion operator cooperativity factor = 2 gene 1 production _ rate K Diss * decay _ rate cooperativity factor = 3 cooperativity factor = 4 production _ rate gene 2 K * decay _ rate Diss after Cherry & Adler, JTB 2000 Multi-cellular mutual exclusion Potential genetic regulatory functional building blocks (D) (A) (E) (F) (B) (C) (g) The feed forward motif: Alon & colleagues, Nature Genetics, 2002. 31(1): p. 64-8 see also: 10000 protein_A protein_AA protein_B 8000 100 molecules 6000 4000 yeast 2000 0 0 2001.334 ~ 2 days 45000 40000 protein_A protein_AA 35000 protein_B 30000 25000 MF 20000 15000 10000 5000 0 9000 6000 7000 8000 9000 Potential genetic regulatory functional building blocks (D) (A) (E) (F) (B) (C) (g) Regulatory circuit elements: boundary detection switches Repression cascade activator level steady state gene 2 steady state gene 2 Direct activation activator level U activator activator gene3 U gene1 gene2 gene1 gene2 cell type 1 cell type 2 gene2, cell2 gene2 gene1 gene2 gene1 time gene2, cell1 time time Potential genetic regulatory functional building blocks (D) (A) (E) (F) (B) (C) (g) Potential genetic regulatory functional building blocks (D) (A) (E) (F) (B) (C) (g) A feedforward motif functioning as a reset (homeostasis) mechanism TLR4 NFkB ATF3 IL6, IL12b… NFkB NFkB ATF3 ATF3 TLR4 genes Gilchrist et al, Nature, 2006 Robust behavior in parameter space P2 P2 quantitative measure of behavior P1 P1 Concave: Convex: • Poor stability margins • Large stability margins • Parameter interdependence • Parameter independence Note also rate of change of ‘desired’ behavior away from operating point The same genes take part in different processes and functional blocks Different genes implement the same functional building blocks Data from Davidson lab Heart specification functional module: conserved from flies to humans? fly vertebrate maveric, multi-talented enthusiasts diverse, specialized suppliers of modular, standardized parts early adopters standardize, develop “Killer Apps” performance, reliability, usability and manufacturability http://www.septicshock.org/ http://magnet.systemsbiology.net/software/Pointillist/ Hwang et al, PNAS 2005a, b Orrell et al, Physica D, 2006 Ramsey et al, Nat. Gen. 2006 Gilchrist et al, Nature 2006 http://sugp.caltech.edu/endomes/ Davidson et al, Science 2002 Davidson Lab & Eric Davidson Bill Longabaugh Jennifer Smith, Deena Leslie, Andrea Weston, Marcello Marelli, Tim Petersen Steve Ramsey Daehee Hwang Andy Siegel, John Aitchison, Lee Hood Ben Buelow, Mark Gilchrist, Katy Kennedy, Adrian Ozinsky, Jared Roach, Carrie Baldwin, Natalya Yudkovsly David Orrell Alan Aderem Alistair Rust Martin Korb Vesteinn Thorsson Pedro de Atauri Mark Robinson Christophe Battail Bin Li Department of Cellular & Physiological Sciences University of British Columbia Life Sciences Centre 2350 Health Sciences Mall Vancouver, BC Canada V6T 1Z3 Recruiting: - Graduate students - Post docs - Technicians - Professional staff Subjects: - molecular & cell biology - transcriptional regulation - single cell assays - math, stats - physics, engineering - computer science - software engineering