Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Genetic and epigenetic risk factors for asthma Manuel A R Ferreira QUEENSLAND INSTITUTE OF MEDICAL RESEARCH Queensland Institute of Medical Research 1. Genetic risk factors Linkage studies in Australian samples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 12q24 Ferreira et al. (2006) Eur J Hum Genet 14: 953 20q13 Ferreira et al. (2005) Am J Hum Genet 77: 1075 2q33 Evans et al. (2004) J Allergy Clin Immunol 114: 826 X Y Chromosome 2q33 CD28 CD28 1879877 3181096 3181098 1181388 0 10 CTLA4 CTLA-4 1181425 3116496 3181113 6435203 20 30 40 50 926169 231770 5742909 231779 3087243 231746 231735 60 120 130 ICOS ICOS 140 150 160 170 1365965 180 3096851 190 200 3116505 3096859 2033171 1978594 210 220 230 4522587 6728120 1559931 4675379 3116534 4675389 933988 240 250 260 270 280 Distance (Kb) 28 SNPs (270 Kb) 933988 4675389 3116534 1559931, 4675379 6728120 4522587 1978594 3096859 1,946 individuals (663 families) 41% 1 offspring (23% : 7% : 11%) 59% >1 offspring (18% : 11% : 30%) 4 continuous traits: FEV1 FEV1/FVC Immunoglobulin E Eosinophilia 1.0 2033171 3116505 3096851 1365965 D', r2 231779 3087243 5742909 231770 926169 231735 231746 1181425 6435203 3181113 3116496 0.0 1181388 1879877, 3181096, 3181098 0 50 100 150 Distance (Kb) 200 250 Chromosome 2q33 Univariate association analysis Fulker et al. (1999), e.g. QTDT Threshold for significance: α = 0.05/(4 traits × 28 SNPs) = 0.0005 Power: < 30% (Locus explained up to 1.5% of the variance, p = 0.3, dominant model) Multivariate association analysis Lange et al. (2004), PBAT Threshold for significance: α = 0.05/(1 trait × 28 SNPs) = 0.0018 Chromosome 2q33 Chromosome 2q33 Position (bp) Sequence 204395500 204395550 204395600 204395650 204395700 204395750 204395800 204395850 CTCTCTNCAAAGGGCCTGGGAGTTGAAGAAGGGTGCAGTCGGGTGGTGGT TATGAATCTCAGAAATCCTGCCACGGAGCCTCCTTTTGTGCCCTATTANT TAACCTTGAGGGACATAGAGAGCATGAGACACCAAGGGGCTTTTGNTTGC CTTACTGTCCCACTAAGAACATAGAATGTTGTTTTGACTTTCCCTTTGCT TAGGGAACCTCCCCCAGATACTCAGCTGGCTGGCTGCTTGCACGTAGAAT GGGTTTTGCAAAGTTCCTAGAAGTGAGTTGGAGGAGGCTTGACATAAATC AAGCACTGTGTGCTAAATGCTCCAGAGGGCTACCTTATGTCCTACACAAA TGTTACATTTCTAATATTTGTAACTCCTTTAAACNTTTATGCAGATGTTT 204396700 204396750 204396850 204396900 204396950 204397000 AGTCTAAAGTCATCAAAACAACGTTATATCCTGTGTGAAATGCTGCAGTC AGGATGCCTTGTGGTTTGAGTGCCTTGATCATGTGCCCTAAGGGGATGGT CGGTGGTGGTGGCCGTGGATGACGGAGACTCTCAGGCCTTGGCAGGTG CGTCTTTCAGTTCCCCTCACACTTCGGGTTCCTCGGGGAGGAGGGGCTGG AACCCTAGCCCATCGTCAGGACAAAGATGCTCAGGCTGCTCTTGGCTCTC AACTTATTCCCTTCAATTCAAGTAACAGGTAAACAATGTTAATGTCTTTC TTTCTGTAAATATTTTTTGAGGTCTTCCAATTGGCTTAGTTTATTTTAAA 204398200 204398250 204398300 204398350 204398400 204398450 204398500 204398550 AAAAGGCCCCCGCTTGGTTCAAAAACTGGACTGATAGGGGTCAACAGTCA TGCTTAAATAAGGACAGTTATTTTTCCCTGAAAGATACATTGAAAAGCCA GTATCCTCAATTTTCTTTCTTATTTTGGCAGTACAGAGACTGCATTATTT GTTGTTATTCTTAAACATTAAGTGTACATAGCCCAAAGAGTATAATTTCC CAATCTGCAGAGGTACAGTAGTTGCATATATACCCGTTTATTTTATGGTC TGACGTACCAGTGAGCACAAATTGTGTATATTTATAAAACGTGTTGATAT AATGAAAGACATGAGTTGGCAATGAGATCTGGTACCAAGCGTTTACAGCT ACCAAATATATTCTACAAGAATCTTTAACATTTATTTTAAAAAGGTCAAA 2 0 4 3 9 6 8 0 0 G G Comments rs3181096, E4BP4 TFS VDR/RXR TFS, PRE and IRF-2 TFS (-) GRE TFS rs3181098, MEF2 and MTATA TFS Promoter () Promoter (β) Vallejo (2005) Exon 1 Proscan Predicted Promoter Chromosome 2q33 Genotyped 3 more samples: Holland, Denmark and Tristan da Cunha Island Genotyped more SNPs to increase LD coverage (ICOS and CD28) Test for epistasis using a novel gene-based association method (Purcell et al. ) 2. Role of epigenetics in asthma Methylation of CpG dinucleotides CpG island Gene MMMM MM Methylated Suppressed M Not methylated Active Methylation and asthma 1. What is the methylation state of known asthma genes? 2. Are there significant differences in methylation levels between individuals? 3. Do methylation levels correlate with clinical markers of asthma? Selected 30 children aged 10-19 (70% asthmatic, 75% atopic) Extracted DNA from peripheral blood leukocytes Quantified methylation state of CpG islands using Sequenom MassSpectometry assay (Ehrich et al. 2005 PNAS 102: 15785) Two genes involved in asthma: IL4 and MS4A2 (beta subunit of the IgE high affinity receptor) IL4 (Interleukin 4) 1 Kb Exon 1 2 3 4 3’ UTR Methylation Mean methylation: 75% Significant differences between CpG sites (P < 0.0001) Lower methylation in regulatory elements Significant differences between individuals (P < 0.0001) e.g. 75% vs 40% (CpG 5) No significant effects of age, sex or steroid medication MS4A2 (FCER1B) 1 Kb Exon 1 2 3 4 5 6 7 3’ UTR Methylation Mean methylation: 90% Significant differences between CpG sites (P < 0.0001) CpG 2 in regulatory element? Significant differences between individuals (P < 0.0001) e.g. 75% vs 30% (CpG 2) No significant effects of age, sex or steroid medication 2006/12/10. CORRECTION: data for CpG2 was found to be unreliable in the Sequenom assay. All other CpGs ok. Correlation between methylation and asthma Significant differences in methylation between individuals. Do these correlate with the expression of asthma phenotypes? Small differences in methylation (~15%) can result in large differences (~40%) in gene transcription Oates et al. (2006) Am J Hum Genet 79: 155 Correlation coefficient IL4 MS4A2 0.4 Eosinophils 0.3 IgE 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 * ** 1 2 3 4 5 CpG units 6 ** 1-6 1 * * 2 3 4 5 6 7 8 9 10 11 1-11 CpG units * P < 0.05, ** P < 0.01 A B Genetic risk factors Environmental risk factors Methylation state of asthma genes Genetic risk factors Environmental risk factors Methylation state of asthma genes ASTHMA ASTHMA Summary Genetic risk factors Identified SNPs in the promoter of CD28 that are associated with asthma phenotypes Potentially relevant transcription factors bind to this promoter region Extending our study to validate these results Role of epigenetics in asthma Measured the methylation state of IL4 and MS4A2 Mostly methylated in PBLs of asthmatic children Significant variation in methylation between CpG sites and between individuals This variation is associated with the expression of asthma clinical phenotypes Acknowledgments Queensland Institute of Medical Research Princess Margaret Hospital for Children, Perth Nick Martin David Duffy Emma Whitelaw Grant Montgomery Megan Campbell Leanne McNeill Sri Shekar Zhen Zhen Zhao Renee Mayne Louise O’Gorman Nathan Oates Peter Le Souëf Paul R. Burton Woolcock Institute of Medical Research, Sydney Brett G. Toelle Royal Children’s Hospital, Melbourne Colin Robertson Sequenom Funding Mathias Ehrich Jeff Bryant Doctorate scholarship, Ministry of Science, Portugal NHMRC project grant 290274 The Asthma Foundation of Queensland NHMRC Sidney Sax post-doctoral fellowship