Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Use of Samples in Research Rhabdomyosarcomas Janet Shipley Sarcoma Molecular Pathology Team The Institute of Cancer Research Sutton, UK Childhood Cancers ~ 1,500 new cases in UK p.a. 1 1% Liver 2 3% Germ cell 3 3% Eye 4 5% Bone 5 6% Wilms 6 6% Soft tissue 7 7% Neuroblastoma 8 14% Lymphoma 9 18% CNS 10 30% Leukaemia 11 7% Other 6-8% soft tissue sarcomas (1% in adults) > 50% rhabdomyosarcoma (RMS) ~ 70 new cases in UK p.a. Clinical issues: • Overall survival rhabdomyosarcomas (RMS) ~70% • Certain categories and metastatic disease - dismal • Major cause from cancer death in children • Toxicity leads to survivorship issues Rhabdomyosarcoma (RMS) histology • Small round blue cell tumours • Resemble developing skeletal muscle • Two main histological subtypes: – Embryonal (ERMS) – Alveolar (ARMS) Embryonal RMS (ERMS) (60-80% of RMS cases) • Cells resemble embryonic skeletal muscle • Predominant in younger children • Generally good prognosis ERMS genetics Ploidy changes and aneuploidy (2, 8, 12, 13, 17 and 20) - chromosomal instability CIN Abnormalities of 11p: Increased IGF2 expression through: - Loss of heterozygosity (LOH) 80% affects IGF2, H19 and CDKN1C (p57KIP2) loci (duplication of paternal non-silenced locus) - Loss of imprinting (LOI) – 20% (loss of maternal IGF2 imprinting) - RAS mutations including HRAS at 11p Alveolar RMS (ARMS) (20-40% of RMS cases) • Older children • Poor prognosis • Characteristic translocations ARMS genetics • Ploidy changes, aneuploidy and amplification events • TP53 mutations • LOI loss of maternal silencing of IGF2 - biallelic expression H19 affects IGF2 imprinting • Characteristic chromosome translocations present in most, but not all cases Characteristic translocations present in ~70% of ARMS – ~80% of which t(2;13)(q35;q14) PAX3/FOXO1 – ~20% t(1;13)(p36;q14) PAX7/FOXO1 and rare variants FOXO1 PAX Paired DNA binding domain Homeodomain Transactivation domain Survival from rhabdomyosarcoma in GB, 1991-2000 Fig 5.13 Rhabdomyosarcoma, by subtype Survival of patients diagnosed 1991-2000 % still alive 100 80 60 40 20 Embryonal N=341 Unspecified N=72 Alveolar N=123 0 0 1 2 3 4 5 6 7 8 9 10 Years since diagnosis 11 12 13 14 15 Charles Stiller, CCLG data Use of PAX-FOXO1 Fusion vs Histology in clinical stratification • PAX fusion gene status has been used for years as “unofficial” diagnostic aid • Current and past treatment stratifications incorporate histology into risk management strategies • The definition of Alveolar histology changed in the 90s (from majority to any) • Differentiating Alveolar from Embryonal involves finding histological evidence of alveolar spaces (with the exception of solid alveolar) As 30% of RMS with alveolar histology do not appear to have fusion gene Q: Clinical and biological impact of fusion gene status and histology Williamson et al 2010 JCO Criteria for Inclusion • Patients with RMS all stages less than 21 years old, both sexes • RMS diagnosed or treated in France or UK (through CCLG) between 1989 and 2005 - SIOP protocols • Review of histological diagnosis of RMS alveolar and embryonal according to morphology and immunohistochemistry by members of the French/UK panel of pathologists Analyses • Molecular analysis of a representative sample by the Institut Curie or ICR for presence of PAX3/FOXO1, PAX7/FOXO1 or PAX3/NCOA1 by multiplex RT-PCR • DNA array CGH profiling • Gene expression profiling (Affymetrix Plus 2) Issue of RNA quality critical – rapid snap freezing Used in Survival Analysis ARMSp ARMSn ERMS No. of Patients Median Age (Years) Sex Male Female Site of Disease Parameningeal Limb Genitourinary Head and Neck Bladder/Prostate Orbit Other Unknown Favorable/Unfavorable Sites No. of Patients % Favorable SIOP Stage I II III IV NA Size <=5cm >5cm NA Used in Microarray Analysis ARMSp ARMSn ERMS Used in CGH Analysis ARMSp ARMSn ERMS 94 7.0 39 4.5 77 5.0 45 7.1 20 6.0 36 6.8 50 8.6 27 5.8 51 5.4 53 41 21 18 48 29 21 24 11 9 22 14 24 26 14 13 33 18 13 35 5 9 0 4 19 9 12 2 9 2 1 7 5 1 16 3 13 5 7 12 13 8 10 17 0 4 0 2 9 3 9 1 7 0 0 2 1 0 8 2 6 3 3 7 7 0 12 19 0 4 0 1 10 4 12 3 6 0 1 4 1 - 12 6 6 3 4 9 11 - 18/67 18/20 30/39 6/36 9/11 16/20 5/41 10/17 18/33 21 47 43 14 45 44 10 37 35 21 12 16 43 2 10 10 7 8 4 24 34 6 12 1 9 9 5 20 2 8 5 4 3 - 10 18 1 7 - 8 8 7 25 2 7 10 4 6 - 15 24 3 8 1 10 28 56 13 12 14 17 16 44 12 23 10 11 8 1 15 15 6 11 27 12 13 13 1 20 22 9 Overall and Event Free Survival Cox Regression – Risk of Recurrence Relative Risks of Recurrence Variable Univariate model RR (95%CI) Multivariate model p-value RR (95%CI) p-value Fusion NEG 1.00 1.00 4 10-9 POS 2.89 (1.99-4.17) 6 10-4 3.0 (1.6-5.6) Histology ERMS 1.00 ARMS 2.03 (1.36-3.02) 4 10-4 1.00 0.51 0.8 (0.4-1.5) Stage 1-3 1.00 1.00 1 4 2.3 (1.58-3.35) 10-5 1.7 (1.2-2.6) Fusion gene positive cases greater risk of recurrence 0.005 Cox Regression – Risk of Death Relative Risk of Death Variable Univariate model RR (95%CI) Multivariate model p-value RR (95%CI) p-value Fusion NEG 1.00 1.00 3 POS 10-10 3.85 (2.46-6.04) 0.012 2.5 (1.2-5.1) Histology 7 10-6 ERMS 1.00 1.00 ARMS 3.04 (1.83-5.06) 1.3 (0.6-2.9) 1.00 1.00 0.48 Stage 1-3 7 10-9 4 3.55 (2.31-5.45) 2.6 (1.7-4.1) Fusion gene positive cases greater risk of death 2 10-5 Frequency of Metastases Expression profiling of 101 RMS Negative Matrix Factorisation (NMF) - Metagenes • ARMSp ERMS – 101 This Study • 69 Alveolar • 37 Embryonal • ARMSn • 64 Alveolar • 55 Embryonal Davicioni et al • HGU133a – Wachtel et al – 30 ERMS ERMS HGU133a – Davicioni et al – 118 ARMS ARMSn ARMSp ERMS ARMSn ARMS HGU133 plus 2 Our Study • 15 Alveolar • 15 Embryonal Wachtel et al Laé et al • HGU133a – Laé – 38 • 23 Alveolar • 15 Embryonal Negative Matrix Factorisation (NMF) - Metagenes Training Test ARMSp ARMSn ERMS Supervised Analysis - Support Vector Machine Classification Training Set Class Count No Call No Call (%) Real Error Real Error (%) Correct Call Correct Call (%) ARMSp 45 0 0 1 2 44 98 ARMSn 20 2 10 17 94 1 6 ERMS 36 0 0 1 3 35 97 Total 101 2 2 19 19 80 81 Count No Call No Call (%) Real Error Real Error (%) Correct Call Correct Call (%) ARMSp 83 1 1.2 1 1.2 81 99 ARMSn 18 0 0 18 100 0 0 ERMS 85 2 2.4 4 4.7 79 95 Total 186 4 1.7 37 17.7 186 82.3 Test Set Class Supervised Analysis – SAM (Significance Analysis Microarray) DNA analysis - ArrayCGH – 128 RMS Gain of Chromosome 8 is Characteristic of Fusion Negative RMS Expression Copy number Chromosome 8 genes are enriched in Metagene F2 linked to fusion neg cases Highly correlated with F2 metagene Highly anti-correlated with F2 metagene Metagenes associated with outcome •Davicioni et al MG34 • New metagene we derived, less efficient in their dataset - overfitting • Heavy association with fusion gene status, PAX3-FOXO1 versus PAX7-FOXO1 cases PAX3-FOXO1 versus PAX7-FOXO1 cases • Similar gene expression profiles • Predictive metagenes linked to PAX3 v PAX7-FOXO1 • Direct comparison? - COG study, PAX7-FOXO1 better outcome - German study, no difference - Limited numbers Pilot data N=450 from MMT89, 95 , 98 Plus current EpSSG cases PAX3-FOXO1 fusion dual-color assay 5’ PAX3 3’ FOXO1 Telomeric Probes (BACs) Centromeric Probes (BACs) RP11-81I18 RP11-452K11 RP11-16P6 RP11-805F18 PAX3-FOXO1 RP11-612G6 RP11-350A18 Chimeric der(13) t(2;13) (q35,q14) Normal PAX3-FOXO1 PAX7-FOXO1 fusion dual color assay 5’ PAX7 3’ FOXO1 Telomeric Probes (BACs) Centromeric Probes (BACs) RP11-468N9 RP11-452K11 CTD-2009F7 RP11-805F18 PAX7-FOXO1 RP11-121A23 RP11-350A18 Chimeric der(13) t(1;13) (p36;q14) Normal PAX7-FOXO1 Plus RT-PCR analyses where possible Conclusions 1 • PAX fusion negative ARMS clinically and molecularly indistinguishable from ERMS • Fusion negative RMS characterised by a distinct and common expression signature including chromosome 8 gain • Implications for the ongoing risk stratification strategies in current RMS treatment protocols under versus over treatment PLANS: • Prospective study to assess classifier • Additional/refinement of potential prognostic markers • Identify and validate presence of potential therapeutic targets Thanks to… INSERM U830 Institut Curie Olivier Delattre Daniel Williamson Gaelle Pierron Benedicte Thuille Stephanie Reynaud Départment de Pédiatrie, Institut Curie Daniel Orbach Gilles Palenzuela Pathology Dept. Institut Curie Paul Fréneaux Marick Laé Ligue Nationale Contre le Cancer Aurélien de Reyniès Manchester Children’s Hospital Anna Kelsey Swiss Bioinformatics Institute Edoardo Missiaglia GOS Kathy Pritchard-Jones Department of Pediatric and Adolescent Oncology, Institut Gustave Roussy Odile Oberlin Children's Cancer and Leukaemia Group