Download 120908.121108.RLyons.AminoAcidMetabolism

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Author: Robert Lyons, Ph.D., 2008
License: Unless otherwise noted, this material is made available under the terms of
the Creative Commons Attribution – Share Alike 3.0 License:
http://creativecommons.org/licenses/by-sa/3.0/
We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use,
share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this
material.
Copyright holders of content included in this material should contact [email protected] with any questions,
corrections, or clarification regarding the use of content.
For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.
Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a
replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your
physician if you have questions about your medical condition.
Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy
Use + Share + Adapt
{ Content the copyright holder, author, or law permits you to use, share and adapt. }
Public Domain – Government: Works that are produced by the U.S. Government. (17 USC §105)
Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
Creative Commons – Zero Waiver
Creative Commons – Attribution License
Creative Commons – Attribution Share Alike License
Creative Commons – Attribution Noncommercial License
Creative Commons – Attribution Noncommercial Share Alike License
GNU – Free Documentation License
Make Your Own Assessment
{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }
Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in
your jurisdiction may differ
{ Content Open.Michigan has used under a Fair Use determination. }
Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your
jurisdiction may differ
Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that
your use of the content is Fair.
To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
M1 Renal:
Nitrogen Metabolism (and Related Topics)
• Amino Acid Metabolism (Nitrogen metabolism)
• Folate Metabolism (“One-Carbon pathways”)
• Nucleotide Metabolism
Dr. Robert Lyons
Assistant Professor, Biological Chemistry
Director, DNA Sequencing Core
Web: http://seqcore.brcf.med.umich.edu/mcb500
Fall 2008
R. Lyons
Supplementary study material on the Web:
http://seqcore.brcf.med.umich.edu/mcb500
Amino Acid met abolism
A mino acids
Folat e met abolism
Met hylene
THF
Glu, Gln,
Asp , NH3
Met
Cycle
Urea
oxaloac et at e
Pu r in e s
Uric Acid
DNA
RNA
Py r im id in e s
( energy )
f um arat e
TCA Cycle
R. Lyons
Nucleic Acid met abolism
Protein Degradation:
• Endogenous proteins degrade continuously
- Damaged
- Mis-folded
- Un-needed
• Dietary protein intake - mostly degraded
Nitrogen Balance - expresses the patient’s current
status - are they gaining or losing net Nitrogen?
Transaminases
Collect Amines
General react ion overview:
H
H
R1
C
COO
NH2
amino
acid
(-)
(-)
+
R1 C
O
R2 C COO
O
-keto
acid
(typically
alpha-ketoglutarate)
COO
(-)
+ R2 C
COO
(-)
NH2
amino
acid
(typically glutamate)
-keto
acid
Det ails of react ion mechanism:
-keto
acid
amino
acid
H
R
C
(-)
COO
NH2
+
O
CH
P OCH2
N CH3
H
pyridoxal
phosphate
R. Lyons
R
C
(-)
COO
R C
N
CH
OH
+
H+
H
H2 O
P OCH2
+
N
H
OH
CH3
P OCH2
(-)
COO
R
C
N
N
CH
HCH
OH
N CH3
H
P OCH2
+
N
H
(-)
COO
OH
CH3
(-)
R C COO
O
+
NH2
HCH
P OCH2
OH
CH3
N
H
pyridoxamine
phosphate
+
Transfer the amine back to an acceptor -keto acid
NH2
O
CH
HCH
P OCH2
OH
+
N CH3
H
pyridoxamine
phosphate
R. Lyons
+
R
C
O
(-)
COO
-keto
acid
P OCH2
H
OH
+
N CH3
H
pyridoxal
phosphate
+
R
C
COO
NH2
amino
acid
In peripheral tissues, transaminases tend to form
Glutamate when they catabolize amino acids
In other words, alpha-ketoglutarate is the preferred
acceptor, and Glutamate is the resulting amino acid:
Some amino acid + -ketoglutarate  some alpha keto acid + Glutamate
Glutamate can donate its amines to
form other amino acids as needed
A specific example - production of Aspartate in liver
(described a few slides from now):
Glutamate + oxaloacetate  -ketoglutarate + aspartate
Ge t t ing A m ine s Int o t he Liv e r
Glutamate
Dehydrogenase:
H
(-)
O2C CH2CH2C CO(-)
2
NAD(P)
O2C CH2CH2C CO(-)
2
(-)
(mito)
NH2
glutamate
NAD(P)H
Glutamine
Synthetase:
OOC
C
-ketoglutarate
(-)
(-)
OOC
CH2CH2 COO
(+)
glut amat e
R. Lyons
ammonia
H
NH3
ATP+ NH3
NH3
O
H
(- )
+
ADP+ Pi
C
O
CH2CH2C
NH3
(+ )
glut amine
NH2
.
In t he Liv e r: Pre curse rs f or Ure a Cy cle
Glut amine is hydrolyzed t o glut amat e and ammonia:
H
(-)
OOC
H
O
C
CH2CH2C
NH3
(-)
O OC
NH2
(+)
CH2CH2 C
N H3
H2O
glut amine
O
C
OH
(+)
NH3
glut amat e
Ammonia can also be formed by the glutamate dehydrogenase reaction
and several other reactions as well.
Glut amat e donat es it s amino group t o f orm aspart at e:
Glut amat e-aspartat e aminot ransferase:
H
(- )
O 2C CH2 CH2 C
H
CO(-)
2
N H2
Glutamate
.
R. Lyons
+
( -)
O 2CC H2 C
H
CO(2-)
O
oxaloacetate
(- )
O 2C CH2 CH2 C
C O(-)
2
O
-keto
glutarate
+
(- )
O 2C CH 2 C
CO(-)
2
NH2
aspartate
2ATP + HCO3 + NH3
Carbamoy l
phosphat e
O
(-)
NH2 C OPO3
1
Pi
2
2ADP + Pi
H
(-)
OOC
C
H
(+)
(-)
CH2CH2CH2NH3
OOC
NH3
O
CH2CH2 CH2NH C NH2
C
NH
(+) 3
(+)
Ornit hine
Cit rulline
Liver mitochondrion
Liver cyt oplasm
H
H
(-)
OOC
(-)
OOC
CH2CH2CH2NH(+)
3
C
NH
NH3
(+)
O
CH2CH2CH2NH C NH2
C
(+) 3
Cit rulline
Ornit hine
O
NH2 C NH2
H
O2CCH2 C CO(-)
2
NH2
aspartate
ATP
(-)
Urea
3
5
AMP + PPi
H2O
H
H
O2CCH2C CO(-)
2
NH2
C
CH2CH2CH2NH C NH(+)
2
H
(-)
OOC
(-)
C
CH2CH2CH2NH C NH2
NH2
NH3
(+)
(-)
OOC
(+)
NH3
A rginine
(+)
4
H
(-)
O2C C C CO2
H
(-)
Fumarat e
R. Lyons
A rgininosuccinat e
Carb am o y l p h o s p h at e sy n t h e t as e I
NH
ATP
O
HO
C
ATP
3
(- )
HO
O
b ic ar b on at e
R. Lyons
C
O P
HO
c ar bo ny l
ADP
ph os p ha te
O
O
O
Pi
C
P O
NH
2
ca rb a ma te
C
NH
2
ca rb a mo yl
ADP
ph os p ha te
O r n it h in e T r a n s c a r b a m o y la s e
Carb am o y l p ho s p hat e
O
N H2 C
Pi
( -)
O P O3
H
( -)
OO C
(+ )
C H C H2 C H2 N H 3
2
C
NH
(+ )
3
O r n it h in e
R. Lyons
(- )
OOC
H
O
C
C H 2C H2 C H2 N H C
NH
(+ )
3
C it r u llin e
NH
2
A r g in in o s u c c in a t e s y n t h e t a s e
H
(-)
O2CC 2C CO2(-)
H
NH2
aspartate
H
(-)
OOC
C
NH
(+) 3
H
O
CH2CH2CH2NH C NH2
(-)
OOC
(+)
CH2CH2CH2NH C NH2
NH3
Cit rulline
(+)
ATP
R. Lyons
C
H
(-)
O2CCH2C CO(-)
2
NH2
AMP + PPi
A rgininosuccinat e
A r g in in o s u c c in a t e ly a s e
H
(-)
O2CCH2C CO2
NH2
(-)
H
(-)
OOC
C
H
(-)
(+)
CH2CH2CH2NH C NH2
OOC C
NH3
(+)
(+)
Argininosuccinat e
H
(-)
O2C C C CO2
H
(-)
Fumarat e
R. Lyons
CH2CH2CH2NH C NH2
NH
NH3
(+) 2
A rginine
A r g in a s e
H
H
(-)
OOC
(-)
OOC
C
CH2CH2CH2NH C NH2
NH
NH3
(+) 2
H2 O
O
NH2 C NH2
Urea
R. Lyons
CH2CH2CH2NH(+)
3
NH
(+) 3
(+)
Arginine
C
Ornit hine
2ATP + HCO3 + NH3
Carbamoy l
phosphat e
O
(-)
NH2 C OPO3
1
Pi
2
2ADP + Pi
H
(-)
OOC
C
H
(+)
(-)
CH2CH2CH2NH3
OOC
NH3
O
CH2CH2 CH2NH C NH2
C
NH
(+) 3
(+)
Ornit hine
Cit rulline
Liver mitochondrion
Liver cyt oplasm
H
H
(-)
OOC
(-)
OOC
CH2CH2CH2NH(+)
3
C
NH
NH3
(+)
O
CH2CH2CH2NH C NH2
C
(+) 3
Cit rulline
Ornit hine
O
NH2 C NH2
H
O2CCH2 C CO(-)
2
NH2
aspartate
ATP
(-)
Urea
3
5
AMP + PPi
H2O
H
H
O2CCH2C CO(-)
2
NH2
C
CH2CH2CH2NH C NH(+)
2
H
(-)
OOC
(-)
C
CH2CH2CH2NH C NH2
NH2
NH3
(+)
(-)
OOC
(+)
NH3
A rginine
(+)
4
H
(-)
O2C C C CO2
H
(-)
Fumarat e
R. Lyons
A rgininosuccinat e
Urea Cycle Connect s t o TCA Cycle
H
(-)
O2CCH2C CO(-)
2
Ornithine
NH2
Citrulline
Aspartate
Urea
Urea Cycle
Arginine
Argininosuccinate
Oxaloacetate
Malate
H
O2C C C CO(-)
2
H
(-)
Fumarate
TCA Cycle
-Ketoglutarate
R. Lyons
Citrate
Ge t t ing A m ine s Int o t he Liv e r
Glutamate
Dehydrogenase:
H
(-)
O2C CH2CH2C CO(-)
2
NAD(P)
O2C CH2CH2C CO(-)
2
(-)
(mito)
NH2
glutamate
NAD(P)H
Glutamine
Synthetase:
OOC
C
-ketoglutarate
(-)
(-)
OOC
CH2CH2 COO
(+)
glut amat e
R. Lyons
ammonia
H
NH3
ATP+ NH3
NH3
O
H
(- )
+
ADP+ Pi
C
O
CH2CH2C
NH3
(+ )
glut amine
NH2
2ATP + HCO3 + NH3
Carbamoy l
phosphat e
O
(-)
NH2 C OPO3
1
Pi
2
2ADP + Pi
H
(-)
OOC
C
H
(+)
(-)
CH2CH2CH2NH3
OOC
NH3
O
CH2CH2 CH2NH C NH2
C
NH
(+) 3
(+)
Ornit hine
Cit rulline
Liver mitochondrion
Liver cyt oplasm
H
H
(-)
OOC
(-)
OOC
CH2CH2CH2NH(+)
3
C
NH
NH3
(+)
O
CH2CH2CH2NH C NH2
C
(+) 3
Cit rulline
Ornit hine
O
NH2 C NH2
H
O2CCH2 C CO(-)
2
NH2
aspartate
ATP
(-)
Urea
3
5
AMP + PPi
H2O
H
H
O2CCH2C CO(-)
2
NH2
C
CH2CH2CH2NH C NH(+)
2
H
(-)
OOC
(-)
C
CH2CH2CH2NH C NH2
NH2
NH3
(+)
(-)
OOC
(+)
NH3
A rginine
(+)
4
H
(-)
O2C C C CO2
H
(-)
Fumarat e
R. Lyons
A rgininosuccinat e
C P S I is S t im u la t e d b y N A G
H
O
(-)
N -a c e t y l
H
O
(-)
OOC
OOC
CH CH C
C
2
+
2
N H3
g lu t a m a t e
Co A - C
OH
O
C
CH CH C
2
2
OH
NH
s y n t h e t as e
C
C H3
( +)
O
C H3
g lu t a m a t e
N - a c e t y l g lu t a m a t e
a c e t y l Co A
( N A G)
( r e p e a t in g t h e f ig u r e f r o m p a g e 3 o f y o u r h an d o u t )
NH
ATP
O
HO
C
( -)
bi ca rb o na te
R. Lyons
HO
O
C
ATP
3
O
O P
HO
c a rb on y l
ADP
p ho s ph at e
O
O
Pi
C
P O
NH
2
c ar ba m at e
C
NH
2
c ar ba m oy l
ADP
p ho sp h at e
-Muscle
(Amines)
Glucose
Pyruvate
Glutamate
Amino acids
-ketoglutarate
Alanine
blood
transport
Alanine -ketoglutarate
Glucose
Glutamate
Pyruvate
Live r
R. Lyons
Urea
NH3
Complicating the picture: Other tissues may be involved
Muscle:
Amino acids:
Transamination
Deamination
Alanine
purine
deamination:
(+)
Glutamate
NH4
Glutamine
Intestine:
Glutamine
(+)
Alanine NH4
Glutamine
Citrulline
Kidney:
Citrulline
NH3
(+)
NH4
Arginine
Liver:
Arginine
Glutamine
(+)
NH4
Alanine
Glu
R. Lyons
Aspartate
Urea
Why is Ammonia Toxic?
Why is Ammonia Toxic?
• Possible neurotoxic effects on
glutamate levels (and also GABA)
(due to shifting equilibria of reactions
involving these compounds)
Why is Ammonia Toxic?
• Possible neurotoxic effects on
glutamate levels (and also GABA)
(due to shifting equilibria of reactions
involving these compounds)
• Possible metabolic/energetics effects:
- alpha-ketoglutarate levels
- glutamate levels
- glutamine
2ATP + HCO3 + NH3
Carbamoy l
phosphat e
O
(-)
NH2 C OPO3
1
Pi
2
2ADP + Pi
H
(-)
OOC
C
H
(+)
(-)
CH2CH2CH2NH3
OOC
NH3
O
CH2CH2 CH2NH C NH2
C
NH
(+) 3
(+)
Ornit hine
Cit rulline
Liver mitochondrion
Liver cyt oplasm
H
H
(-)
OOC
(-)
OOC
CH2CH2CH2NH(+)
3
C
NH
NH3
(+)
O
CH2CH2CH2NH C NH2
C
(+) 3
Cit rulline
Ornit hine
O
NH2 C NH2
H
O2CCH2 C CO(-)
2
NH2
aspartate
ATP
(-)
Urea
3
5
AMP + PPi
H2O
H
H
O2CCH2C CO(-)
2
NH2
C
CH2CH2CH2NH C NH(+)
2
H
(-)
OOC
(-)
C
CH2CH2CH2NH C NH2
NH2
NH3
(+)
(-)
OOC
(+)
NH3
A rginine
(+)
4
H
(-)
O2C C C CO2
H
(-)
Fumarat e
R. Lyons
A rgininosuccinat e
Inherited Defects of Urea Cycle Enzymes: Diagnosis
Defects are diagnosed based on the metabolites seen
in the blood and/or urine.
CPSD
OTCD
ASD
ALD
AD
No elevation except ammonia; diagnosed by elimination.
Elevated CP causes synthesis of Orotate
Elevated citrulline
Elevated argininosuccinate
Elevated arginine
2ATP + HCO3 + NH3
Carbamoy l
phosphat e
O
(-)
NH2 C OPO3
1
Pi
2
2ADP + Pi
H
(-)
OOC
C
H
(+)
(-)
CH2CH2CH2NH3
OOC
NH3
O
CH2CH2 CH2NH C NH2
C
NH
(+) 3
(+)
Ornit hine
Cit rulline
Liver mitochondrion
Liver cyt oplasm
H
H
(-)
OOC
(-)
OOC
CH2CH2CH2NH(+)
3
C
NH
NH3
(+)
O
CH2CH2CH2NH C NH2
C
(+) 3
Cit rulline
Ornit hine
O
NH2 C NH2
H
O2CCH2 C CO(-)
2
NH2
aspartate
ATP
(-)
Urea
3
5
AMP + PPi
H2O
H
H
O2CCH2C CO(-)
2
NH2
C
CH2CH2CH2NH C NH(+)
2
H
(-)
OOC
(-)
C
CH2CH2CH2NH C NH2
NH2
NH3
(+)
(-)
OOC
(+)
NH3
A rginine
(+)
4
H
(-)
O2C C C CO2
H
(-)
Fumarat e
R. Lyons
A rgininosuccinat e
C P S I is S t im u la t e d b y N A G
H
O
(-)
N -a c e t y l
H
O
(-)
OOC
OOC
CH CH C
C
2
+
2
N H3
g lu t a m a t e
Co A - C
OH
O
C
CH CH C
2
2
OH
NH
s y n t h e t as e
C
C H3
( +)
O
C H3
g lu t a m a t e
N - a c e t y l g lu t a m a t e
a c e t y l Co A
( N A G)
( r e p e a t in g t h e f ig u r e f r o m p a g e 3 o f y o u r h an d o u t )
NH
ATP
O
HO
C
( -)
bi ca rb o na te
R. Lyons
HO
O
C
ATP
3
O
O P
HO
c a rb on y l
ADP
p ho s ph at e
O
O
Pi
C
P O
NH
2
c ar ba m at e
C
NH
2
c ar ba m oy l
ADP
p ho sp h at e
2ATP + HCO3 + NH3
Carbamoy l
phosphat e
O
(-)
NH2 C OPO3
1
Pi
2
2ADP + Pi
H
(-)
OOC
C
H
(+)
(-)
CH2CH2CH2NH3
OOC
NH3
O
CH2CH2 CH2NH C NH2
C
NH
(+) 3
(+)
Ornit hine
Cit rulline
Liver mitochondrion
Liver cyt oplasm
H
H
(-)
OOC
(-)
OOC
CH2CH2CH2NH(+)
3
C
NH
NH3
(+)
O
CH2CH2CH2NH C NH2
C
(+) 3
Cit rulline
Ornit hine
O
NH2 C NH2
H
O2CCH2 C CO(-)
2
NH2
aspartate
ATP
(-)
Urea
3
5
AMP + PPi
H2O
H
H
O2CCH2C CO(-)
2
NH2
C
CH2CH2CH2NH C NH(+)
2
H
(-)
OOC
(-)
C
CH2CH2CH2NH C NH2
NH2
NH3
(+)
(-)
OOC
(+)
NH3
A rginine
(+)
4
H
(-)
O2C C C CO2
H
(-)
Fumarat e
R. Lyons
A rgininosuccinat e
Clinical Management of Urea Cycle Defects
• Dialysis to remove ammonia
• Provide the patient with alternative ways to excrete
nitrogenous compounds:
* Intravenous sodium benzoate or phenylacetate
* Supplemental arginine
carbamoyl phosphate
Excreted by kidney
Ornithine
O
NH2 C NH2
Citrulline
ATP
Urea
AMP+PP i
HO
2
Arginine
Aspartate
XASD
Argininosuccinate
Excreted by kidney
XALD
Dietary
Arginine
R. Lyons
• Levulose - acidifies the gut
• Low protein diet
Degrading the Amino Acid Carbon Backbone
Easily-degraded products after transamination:
H
(-)
O2C CH2C CO(-)
2
NH3
(+)
aspartate
(-)
t ransaminat ion
O2CCH2C CO(-)
2
O
oxaloacetate
H
(-)
O2C CH2CH2C CO2
NH
(+) 3
glutamate
(-)
(-)
(-)
t ransaminat ion
O2C CH2CH2C CO2
O
-ketoglutarate
t ransaminat ion
CH3 C CO(-)
2
O
pyruvate
H
(-)
CH3 C CO2
NH3
(+)
alanine
R. Lyons
We also already know how to degrade Glutamine:
glutaminase
Glutamine ----------------> glutamate + ammonia
…and by analogy, how to degrade Asparagine:
asparaginase
Asparagine ---------------> aspartate + ammonia
Amino Acids are categorized as ‘Glucogenic’
or ‘ketogenic’ or both.
Many amino acids are purely glucogenic:
Glutamate, aspartate, alanine, glutamine,
asparagine,…
Some amino acids are both gluco- and ketogenic:
Threonine, isoleucine, phenylalanine,
tyrosine, tryptophan
The only PURELY ketogenic Amino Acids:
leucine, lysine
H
(-)
OOC
C
CH2CH2CH2NH C NH2
NH2
NH3
(+)
(+)
Arginine
Urea ( via
t he urea cy cle)
H
(-)
OOC
C
CH2CH2CH2NH(+)
3
NH
Amino acids with 5-carbon
backbones tend to form
-ketoglutarate
(+) 3
Ornit hine
-ket oglut arat e
glut amat e
H
(-)
OOC
C
(-)
O
CH2CH2C
NH3
OOC
H
(+)
N
H
Proline
(+)
glut amat e - 5 - semialdehyde
(+)
NAD(P)
NA D(P)H
H
(-)
OOC
C
H
O
CH2CH2C
NH3
(-)
OOC
OH
 - ket oglut arat e
R. Lyons
O
CH2CH2C
NH3
(+)
glut amat e
C
(+)
NH3
H2O
glut amine
NH2
Degradation and Biosynthesis of Serine and Glycine
(+)
NADH
NAD
H
(-)
OOC C
Glycine
Synthase:
NH3
CO2
(+)
(+)
NH4
+
H
THF
Glycine
(-)
Serine
Hydroxymethyltransferase:
OOC
CH
N5 -N10- methylene THF
(-)
OOC
NH3
(+)
CH2OH
THF
Serine
N5 -N10- methylene THF
C
H
2
Gly cine
H 2O
Serine
Dehydratase:
(-)
OOC
CH
NH
(+)3
CH2OH
Serine
R. Lyons
NH
(+) 3
(+)
NH4
(-)
OOC
C
CH2
(+)
NH3
(-)
OOC
C
CH3
(+)
(-)
NH2
OOC
H 2O
C
CH3
O
H
H
CH3
S
CH2
CH3
(-)
CH2 C
COO
CH2
S
CH2 C
CH2
NH3
(+)
(+)
ATP +
HO
2
NH
(+) 3
O
PPi +
Pi
(-)
COO
H
H
Ad en in e
H
H OH OH
Met hionine
S-A denosyl Met hionine
Met h yl a cce pt o r
te t rah yd ro fo lat e
Bi os ynt h et ic
Me t hy lat io n
re act io n
*
se e e xam pl es
N5 me th yl
t et rah yd ro fo la te
Methionine Cycle
And Biological
Methyl Groups
Me t hyl at ed acc ep to r
H
(+)
H
HS
CH2 CH2 C
(-)
NH3
H
NH
Ad en in e
S-Adenosy l Homoc yst eine
(-)
CH2 C
COO
NH3
(+)
Serine
H
CH2 C
(-)
COO
NH
(+) 3
Cy st eine
(remainder of
homocysteine
degraded
for energy)
H
H
H OH OH
Homoc yst eine
HS
(-)
COO
(+) 3
O
(+)
HO
CH2 C
CH2
COO
H
R. Lyons
CH2
HS
Phenylalanine and Tyrosine
(Normal pat h shown in black, pat hological react ion shown in red)
Tetrahydrobiopterin + O2
Dihydrobiopterin + H2O
(+)
NH 3
CH2
CH
(-)
(-)
COO
Phenylpyruvat e
CH
(-)
COO
Tyrosine
Homogent isat e
O
R. Lyons
CH2
Enzyme:
Phenylalanine
hydroxylase
Phenylket onuria
(no phenylalanine
hydroxylase)
C
NH 3
HO
COO
Phenylalanine
CH2
(+)
Deficiency:
Alkaptonuria
“Ochronosis”
Enz yme:
homogent isat e
dioxy genase
(you don’ t need t o
know t he rest )
Branched Chain Amino Acids
Isoleucine
CH3 CH2 CH
CH
CH3
Leucine
(-)
COO
CH3CH CH 2
NH3
CH3
(+)
CH
Valine
(-)
COO
NH3
CH3 CH
(-)
COO
CH3 NH3
(+)
(+
)
-KG
-KG
CH
-KG
--- ------------ - Transaminat ion -------- -------Glu
CH3 CH2 CH
C
CH3
Glu
(-)
COO
O
CH3CHCH 2
C
CH3
O
+
(-)
COO
Glu
CH3CH
C
CH3 O
NAD,+ CoASH
NAD,+ CoASH
NAD, CoASH
(-)
COO
--- Branched-chain -ket o acid dehydrogenase - -NADH +
CO
CH3 CH2 CH
CH3
C
O
S-CoA
NADH + CO2
NADH + CO2
2
CH3CHCH 2
C
CH3
O
S-CoA
CH3CH
C
S-CoA
CH3 O
( cont inues on t o degradat ion pat h similar t o -oxidat ion of fatt y acids)
R. Lyons
Synt hesis of Bioact ive Amines
(+)
NH 3
HO
CH 2
CH
(-)
COO
NH 3
HO
CH 2
Tyrosine
hydroxy lase
Tyrosin e
HO
HO
(+)
HO
(+)
HO
CH 2CH 2NH 3
HO
R. Lyons
COO
Dih ydroxyp heny lalanin e
( L-DOPA)
OH
HO
(+)
CH CH 2NH 3
H
Dop am ine
(-)
CH
No repine phrine
HO
OH
CHCH 2 N CH 3
H
H
Ep ineph rine
Synthesis of Bioactive Amines
CH 2
N
CH
NH3
(+)
Tryp t o ph an
(-)
HO
COO
Tryptophan
hy droxylase
CH2
N
(-)
COO
NH
(+) 3
5 -hyd roxyt ryp t o ph an
PLP-de pe ndent
de cvarboxylat ion
CO2
HO
CH 2
NAD+
N
Sero t o nin
R. Lyons
CH
CH2
NH3
(+)
Synthesis of Bioactive Amines
(-)
(-)
COO CH 2 CH2 CH COO
NH3
(+)
Glut amat e
N
N
H
CH2
NH
(+) 3
Hist idine
R. Lyons
CH
(-)
Glutam ate
de carboxylase
( PLP-depe ndent )
NH3
COO CH 2 CH 2 CH2 (+)
-amin ob ut yric acid
(GABA)
N
(COO)
Hist idine
de carboxylase
( PLP-de pe ndent )
N
H
CH2
CH2
Hist amine
NH3
(+)
NON-Essential Amino Acids:
Glutamate, aspartate, alanine, glutamine, asparagine,
(proline), glycine, serine (cysteine, tyrosine)
Essential Amino Acids:
Arginine (!), phenylalanine, methionine, histidine,
Isoleucine, leucine, valine, threonine, tryptophan, lysine
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy
Slide 4: Robert Lyons
Slide 5: Robert Lyons
Slide 7: Robert Lyons
Slide 8: Robert Lyons
Slide 11: Robert Lyons
Slide 12: Robert Lyons
Slide 13: Robert Lyons
Slide 14: Robert Lyons
Slide 15: Robert Lyons
Slide 16: Robert Lyons
Slide 17: Robert Lyons
Slide 18: Robert Lyons
Slide 19: Robert Lyons
Slide 20: Robert Lyons
Slide 21: Robert Lyons
Slide 22: Robert Lyons
Slide 23: Robert Lyons
Slide 24: Robert Lyons
Slide 25: Robert Lyons
Slide 29: Robert Lyons
Slide 31: Robert Lyons
Slide 32: Robert Lyons
Slide 33: Robert Lyons
Slide 34: Robert Lyons
Slide 36: Robert Lyons
Slide 38: Robert Lyons
Slide 39: Robert Lyons
Slide 40: Robert Lyons
Slide 41: Robert Lyons
Slide 44: Robert Lyons
Slide 45: Robert Lyons
Related documents