Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 10 Molecular Biology of the Gene PowerPoint Lectures for Biology: Concepts and Connections, Fifth Edition – Campbell, Reece, Taylor, and Simon Lectures by Chris Romero Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Sabotage Inside Our Cells • A saboteur – Lies low waiting for the right moment to strike Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • Viruses are biological saboteurs – Hijacking genetic material of host cells in order to reproduce themselves • Viruses provided some of the earliest evidence – That genes are made of DNA Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings THE STRUCTURE OF THE GENETIC MATERIAL 10.1 Experiments showed: DNA= genetic material • Hershey-Chase experiment – certain viruses reprogram host cells – produce more viruses by injecting their DNA Head Tail DNA Tail fiber Figure 10.1A Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • The Hershey-Chase experiment Phage Radioactive protein Bacterium Empty protein shell Radioactivity in liquid Phage DNA DNA Batch 1 Radioactive protein Centrifuge Pellet 1 Mix radioactively labeled phages with bacteria. The phages infect the bacterial cells. 2 Agitate in a blender to separate phages outside the bacteria from the cells and their contents. 3 Centrifuge the mixture so bacteria form a pellet at the bottom of the test tube. 4 Measure the radioactivity in the pellet and the liquid. Radioactive DNA Batch 2 Radioactive DNA Centrifuge Pellet Figure 10.1B Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Radioactivity in pellet • Phage reproductive cycle Phage attaches to bacterial cell. Phage injects DNA. Phage DNA directs host cell to make more phage DNA and protein parts. New phages assemble. Cell lyses and releases new phages. Figure 10.1C Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings 10.2 DNA and RNA are polymers of nucleotides • nucleic acids – long chains of nucleotide monomers Sugar-phosphate backbone Phosphate group Nitrogenous base A C A Sugar DNA nucleotide C Nitrogenous base (A, G, C, or T) Phosphate group O H3C C O T T O P O CH2 O– G G H C N H N C O Thymine (T) O C H H C H C C H O C H Sugar (deoxyribose) T T DNA nucleotide Figure 10.2A DNA polynucleotide Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • DNA has four kinds of nitrogenous bases – A, T, C, and G H O C H3C H C C H H N C H N C N C C C N O H N H H Thymine (T) Cytosine (C) H N H O Pyrimidines Figure 10.2B Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings N H O C C N C C N H C N N H N C C N H Adenine (A) Guanine (G) Purines H C N H C C N H H • RNA is also a nucleic acid – But has a slightly different sugar – And has U instead of T Nitrogenous base (A, G, C, or U) O Phosphate group H O O P N C C H O CH2 N H O Uracil (U) O– O C H H C H C C H O Figure 10.2C, D C C OH Sugar (ribose) Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Key Hydrogen atom Carbon atom Nitrogen atom Oxygen atom Phosphorus atom 10.3 DNA is a double-stranded helix • James Watson and Francis Crick – Worked out the three-dimensional structure of DNA, based on work by Rosalind Franklin Figure 10.3A, B Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • structure of DNA – Consists of two polynucleotide strands wrapped around each other in a double helix Figure 10.3C Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Twist • Hydrogen bonds between bases – Hold the strands together • Each base pairs with a complementary partner – A with T, and G with C G C T A A T Base pair C G C C G A T T O O –O P O H2C A O O –O P O H2C A A T A Hydrogen bond OH O A T O O O –O P O H2C G T O OH P O H2 C O –O A A Figure 10.3D CH2 O O– OP O O CH2 O O– P O O O CH2 O O– P HO O T OH G O G C T CH2 O O– P O O C G O O C T Ribbon model Partial chemical structure Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Computer model Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings DNA REPLICATION 10.4 DNA replication depends on specific base pairing Online Animation--BioFlix • DNA replication – Starts w/separation of DNA strands • Then enzymes use each strand as a template – To assemble new nucleotides into complementary strands A T A T A T A T A T C G C G C G C G C G G C G C G C G C A T A T A T A T T A T A T A T A Parental molecule of DNA Figure 10.4A C A Nucleotides Both parental strands serve as templates Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Two identical daughter molecules of DNA • DNA replication is a complex process – some of the helical DNA molecule must untwist G C A T G C C G A T T A A C G T C G G C C G G C G T T A A T A A C G T C G C T A A A A G T T T A A C T Figure 10.4B Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings T 10.5 DNA replication: A closer look – Begins at specific sites on the double helix Origin of replication Parental strand Daughter strand Bubble Two daughter DNA molecules Figure 10.5A Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • Each strand of the double helix – Is oriented in the opposite direction 5 end P 3 end HO 5 4 3 2 2 1 A T 1 5 P 3 4 P C G P P G C P P T OH 3 end Figure 10.5B Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings A P 5 end • Using the enzyme DNA polymerase – cell synthesizes one daughter strand as a continuous piece • other strand synthesized as a series of short pieces – connected by the enzyme DNA ligase DNA polymerase molecule 5 3 3 5 Daughter strand synthesized continuously Parental DNA 3 5 5 3 DNA ligase Figure 10.5C Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Overall direction of replication Daughter strand synthesized in pieces THE FLOW OF GENETIC INFORMATION FROM DNA TO RNA TO PROTEIN • 10.6 DNA genotype expressed as proteins, which provide molecular basis for phenotypic traits • info constituting organism’s genotype – carried in its DNA base sequence • A particular gene, a linear sequence of many nucleotides – Specifies a polypeptide Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • DNA of the gene is transcribed into RNA – Which is translated into polypeptide DNA Transcription RNA Translation Protein Figure 10.6A Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • Studies of inherited metabolic disorders in mold – First suggested that phenotype is expressed through proteins Figure 10.6B Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings 10.7 Genetic info written in codons is translated into amino acid sequences • “words” of DNA “language” – triplets of bases: codons • codons in a gene – Specify AA sequence of a polypeptide Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings DNA molecule Gene 1 Gene 2 Gene 3 DNA strand A A A C C G G C A A A A Transcription RNA U U U G G C C G U U U U Codon Translation Polypeptide Figure 10.7 Amino acid Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings 10.8 The genetic code = Rosetta stone of life • Nearly all organisms – Use exactly same genetic code Second base U UUU UUC U C Phe Leu CUU C CUC First base CUA UUG Leu Ser UAG Stop UGG Trp G CCU CAU CCC Pro ACU AAU AUA ACA Met or AUG start ACC GUU GCU GUG AAC Thr U CGU C CGC Arg AUU ACC His CAC CAA GUA C UCG CAG CGA Gln Asn A CGG AGU AGC G U Ser C AGA AAA AAG Lys AGG Arg A G GAU GCC Val U Cys A CCA GUC UGU UGC UGA Stop CCG Ile Tyr UAA Stop A G UAC UCC CUG AUC G UAU UCU UCA UUA A GCA GCG Figure 10.8A Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings GAC Ala Glu C GGC GGA GAA GAG U GGU Asp GGG Gly A G • translating the genetic code Strand to be transcribed T A C T T C A A A A T C A T G A A G T T T T A G A G DNA Transcription A U G A A G U U U U RNA Start codon Stop codon Translation Figure 10.8B Polypeptide Met Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Lys Phe 10.9 Transcription produces genetic messages in the form of RNA • A close-up view of transcription RNA nucleotides RNA polymerase T C C A A A U C C A T A G G T Direction of transcription Figure 10.9A Newly made RNA Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings T T A Template Strand of DNA • In the nucleus, DNA helix unzips – RNA nucleotides line up along one strand of DNA • base pairing rules • single-stranded messenger RNA (mRNA) peels away from the gene – DNA strands rejoin Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings RNA polymerase • Transcription of a gene DNA of gene Promoter DNA Terminator DNA 1 Initiation Area shown In Figure 10.9A 2 Elongation 3 Termination Completed RNA Figure 10.9B Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Growing RNA RNA polymerase 10.11 Transfer RNA molecules serve as interpreters during translation • Translation – Takes place in the cytoplasm Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • A ribosome attaches to the mRNA – translates its message into a specific polypeptide aided by transfer RNAs (tRNAs) Amino acid attachment site Hydrogen bond RNA polynucleotide chain Figure 10.11A Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Anticodon • tRNA molecule – Folded; base triplet (anticodon) on one end • specific amino acid – attached @ other end Amino acid attachment site Figure 10.11B, C Anticodon Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings 10.12 Ribosomes build polypeptides • A ribosome consists of two subunits – Each made up of proteins and a kind of RNA called ribosomal RNA tRNA molecules Growing polypeptide Large subunit mRNA Figure 10.12A Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Small subunit • subunits of a ribosome – Hold tRNA and mRNA close together during translation tRNA-binding sites Large subunit Next amino acid to be added to polypeptide Growing polypeptide tRNA mRNAbinding site Small subunit mRNA Codons Figure 10.12B, C Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings 10.13 An initiation codon marks the start of an mRNA message Start of genetic message End Figure 10.13A Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • mRNA, a specific tRNA, and the ribosome subunits – Assemble during initiation Met Met Large ribosomal subunit Initiator tRNA P site U A C A U G U A C A U G Start codon 1 mRNA A site Small ribosomal subunit Figure 10.13B Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings 2 10.14 Elongation adds AA to polypeptide chain until a stop codon terminates translation • Once initiation is complete – AA added 1 by 1, to 1st amino acid Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • Each addition of an amino acid – 3-step elongation process Amino acid Polypeptide P site A site Anticodon mRNA Codons 1 Codon recognition mRNA movement Stop codon 2 Peptide bond formation New Peptide bond Figure 10.14 Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings 3 Translocation • mRNA moves a codon at a time – tRNA w/complementary anticodon pairs with each codon – adding its AA to peptide chain Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • Elongation continues – Until a stop codon reaches the ribosome’s A site, terminating translation Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings 10.15 Review: flow of genetic information in the cell is DNARNAprotein • sequence of codons in DNA, via sequence of codons – Spells out primary structure of a polypeptide Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • Summary of transcription and translation DNA Transcription 1 mRNA is transcribed from a DNA template. mRNA RNA polymerase Amino acid Translation 2 Each amino acid attaches to its proper tRNA with the help of a specific enzyme and ATP. Enzyme ATP tRNA Anticodon Large ribosomal subunit Initiator tRNA Start Codon mRNA 3 Initiation of polypeptide synthesis The mRNA, the first tRNA, and the ribosomal subunits come together. Small ribosomal subunit New peptide bond forming Growing polypeptide 4 Elongation A succession of tRNAs add their amino acids to the polypeptide chain as the mRNA is moved through the ribosome, one codon at a time. Codons mRNA Polypeptide 5 Termination The ribosome recognizes a stop codon. The poly-peptide is terminated and released. Figure 10.15 Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Stop codon Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings 10.16 Mutations can change the meaning of genes • Mutations are changes in the DNA base sequence – Caused by errors in DNA replication or recombination, or by mutagens Normal hemoglobin DNA C T T mRNA A T G U A C mRNA G Figure 10.16A Mutant hemoglobin DNA A A Normal hemoglobin Glu Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Sickle-cell hemoglobin Val • Substituting, inserting, or deleting nucleotides alters a gene – With varying effects on the organism Normal gene A U G A A G U U U G G C G C A mRNA Met Protein Lys Phe Gly Ala Base substitution A U G A A G U U U A G C G C A Met Lys Phe Ser Ala U Missing Base deletion A U G A A G U U G G C G C A U Figure 10.16B Met Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Lys Leu Ala His MICROBIAL GENETICS 10.17 Viral DNA may become part of the host chromosome • Viruses – Can be regarded as genes packaged in protein Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • When phage DNA enters a lytic cycle inside a bacterium – It is replicated, transcribed, and translated • The new viral DNA and protein molecules – Then assemble into new phages, which burst from the host cell Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • In the lysogenic cycle – Phage DNA inserts into the host chromosome and is passed on to generations of daughter cells • Much later – It may initiate phage production Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • Phage reproductive cycles Phage 1 Attaches to cell Bacterial chromosome Phage DNA Cell lyses, releasing phages Phage injects DNA 7 2 Many cell divisions 4 Lytic cycle Lysogenic cycle Phages assemble Phage DNA circularizes 3 Lysogenic bacterium reproduces normally, replicating the prophage at each cell division Prophage 5 6 OR New phage DNA and proteins are synthesized Figure 10.17 Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Phage DNA inserts into the bacterial chromosome by recombination CONNECTION 10.18 Many viruses cause disease in animals • Many viruses cause disease – When they invade animal or plant cells • Many, such as flu viruses – Have RNA, rather than DNA, as their Membranous genetic material envelope RNA Protein coat Figure 10.18A Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Glycoprotein spike • Some animal viruses – Steal a bit of host cell membrane as a protective envelope – Can remain latent in the host’s body for long periods Glycoprotein spike VIRUS Protein coat Envelope Viral RNA (genome) Plasma membrane 1 of host cell 2 Viral RNA (genome) 3 Entry Uncoating RNA synthesis by viral enzyme 4 Protein mRNA synthesis New viral proteins 5 RNA synthesis (other strand) Template 6 Assembly Exit Figure 10.18B Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings 7 New viral genome CONNECTION 10.19 Plant viruses are serious agricultural pests • Most plant viruses – Have RNA genomes – Enter their hosts via wounds in the plant’s outer layers Protein RNA Figure 10.19 Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings CONNECTION Figure 10.20A, B Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Colorized TEM 370,000 Colorized TEM 50,000 10.20 Emerging viruses threaten human health 10.21 The AIDS virus makes DNA on an RNA template • HIV, the AIDS virus – Is a retrovirus Envelope Glycoprotein Protein coat RNA (two identical strands) Reverse transcriptase Figure 10.21A Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • Inside a cell, HIV uses its RNA as a template for making DNA – To insert into a host chromosome Viral RNA CYTOPLASM 1 RNA strand NUCLEUS Chromosomal DNA 2 Doublestranded DNA 3 Provirus DNA 4 Viral RNA and proteins 5 RNA 6 Figure 10.21B Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings 10.22 Bacteria can transfer DNA in three ways • Bacteria can transfer genes from cell to cell by one of three processes – Transformation, transduction, or conjugation Mating bridge DNA enters cell Fragment of DNA from another bacterial cell Bacterial chromosome (DNA) Phage Phage Fragment of DNA from another bacterial cell (former phage host) Figure 10.22A–C Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Sex pili Donor cell (“male”) Recipient cell (“female”) • Once new DNA gets into a bacterial cell – Part of it may then integrate into the recipient’s chromosome Donated DNA Figure 10.22D Recipient cell’s chromosome Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Crossovers Degraded DNA Recombinant chromosome 10.23 Bacterial plasmids can serve as carriers for gene transfer • Plasmids – Are small circular DNA molecules separate from the bacterial chromosome Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings • Plasmids can serve as carriers – For the transfer of genes F factor (plasmid) F factor (integrated) Male (donor) cell Origin of F replication Bacterial chromosome F factor starts replication and transfer of chromosome Male (donor) cell Bacterial chromosome F factor starts replication and transfer Only part of the chromosome transfers Plasmid completes transfer and circularizes Plasmids Recombination can occur Cell now male Figure 10.23A–C Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Colorized TEM 2,000 Recipient cell