Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The final piece of the puzzle Electron transport and Oxidative phosphorylation Take a deep breath and push on Major Energy Pathways Glycolysis Anaerobic Lactate pyruvate Glucose Galactose Fructose Mannose Fatty Acids Aerobic 1 FADH2 Acetyl-CoA Amino Acids Krebs Cycle 3 NADH O2 Oxidative phosphorylation H2 Electron Transport and Oxidative Phosphorylation 1. The absolute heart of aerobic metabolism 2. Three Functional Phases Electron transfer from NADH, FADH2 to O2 Energy preserved as a proton gradient Proton gradient energy makes ATP We are making ATP from ADP and Pi by tapping the oxidative energy generated in the transfer of electrons to O2 Anatomy of Mitochondria Mitochondria are composed of a dual membrane system: Outer: Porous to all molecules < 10 kDa Inner: Transporter-dependent transport Inner Membrane Transport in Mitochondria Densely packed with specific membrane transporters and the electron-transporting complexes Strategies p219 Electron Transport The successive passage of electrons through a series of membrane complexes to Oxygen. NADH FMN Complex I CoQ Cyt b Cyt c1 Complex III Cyt c Cyt a+a3 O2 Complex IV Table 1: Cytochromes in the Electron Transport System 1. 2. 3. 4. 5. 6. 7. Cytochrome b562 also called bH Cytochrome b566 also called bL Cytochrome b560 Cytochrome c1 Cytochrome c Cytochrome a Cytochrome a3 Complex III Complex III Complex II Complex III Mobile Complex IV Complex IV Fe2+/Fe3+ Fe2+/Fe3+ Fe2+/Fe3+ Fe2+/Fe3+ Fe2+/Fe3+ Fe2+/Fe3+ Cu+/Cu2+ Fe2+/Fe3+ Cu+/Cu2+ Transport Mechanism A bucket-brigade .. NADH NAD+ .. FMN CoQH2 .. .. Cyt b Cyt c1 (Fe3+) (Fe2+) FMNH2 CoQ Cyt b (Fe2+) .. .. Reduced -0.32 volts Cyt c1 (Fe3+) Cyt Cyt c a+a3 (Fe3+) (Fe2+) Cyt c Cyt (Fe2+) a+a3 .. (Fe3+) O2 H2O .. Oxidized + 0.82 volts Electron Transport Complexes • Membranes bound heme proteins or “cytochromes” • Iron-Sulfur proteins..high reducing potential • Mobile electron carriers – Coenzyme Q – Cytochrome c Electron Transport NADH -0.32 Reductive Energy Complex I CoQ H2 Complex II Complex III Cyto C Fe2+ FADH2 O2 Complex IV +0.82 H2O Oxidative Energy Iron-Sulfur Centers Cys Cys Cys S S Cys Fe s s 2- S S Cys S Fe Fe S Cys S S22Fe-2S Fe-S Cys Cys Coenzyme Q O. O CH3 H3CO H3CO O Oxidized CoQ (no electrons) CH3 (CH2= C CH2)n H isoprenoid units n =6-10 OH H3CO CH3 H3CO CH3 H3CO R H3CO R OH CoQH. Semiquinone Form (one electron) OH CoQH2 Quinol Form (2 electrons) NADH Mobile I III CoQ-cyto c Reductase NADH-CoQ Reductase FMN FeS CoQ II Cyt b562 Cyt b566 FeS Cyt c1 Succinate-CoQ Reductase FAD FeS Cyt b560 Succinate Fumarate Cyto c IV Cu2+ Cyt a Cyt a3 Electron Transport Complexes O2 Energy Time Textbook p372 How does the energy of oxidation translate into free energy? DGo’ = –nFDEo’ F = Faraday’s constant = 96,500 J/mol x volt n = Number of electrons Eo’ = Standard Reduction Potential at pH 7 DE = DEo’ + 0.06 log [electron acceptor] [electron donor] Nernst Equation for one electron transfer Determines DE under non-standard state conditions DE = DEo’ + 0.06 log pH = pKa + log [electron acceptor] [electron donor] [proton acceptor] [proton donor] Acid/Base Redox pH DE (reduction potential) pKa DEo’ (standard reduction potential) Proton Acceptor (base) Electron acceptor (oxidant) Proton Donor (acid) Electron donor (reductant) Acceptors (Oxidants) e- Donors (Reductants) DEo’= Eo’ acceptor - Eo’ donor NAD+ + H2O NADH + H+ + 1/2 O2 NAD+ + 2e + 2H+ 1/2 O2 + 2e + 2H+ NADH + H+ H2 O Eo’ –0.32 volts +0.82 volts To Arrive at equation: Top reduces bottom NADH + H+ 1/2 NAD+ +2e + 2H+ O2 + 2e + 2H+ NADH + H+ + Coulomb/mol 1/2 O2 DGo’ = –nFDEo’ H2O +0.32 volts +0.82 volts NAD+ + H2O +1.14 volts J/Coulomb DGo’ = –220 kJ/mol Shuttles Problem: Cytosolic NADH cannot penetrate the mitochondria Solution: Pass the electrons to something that can penetrate the mitochondria membrane Two Shuttles Insect brain and flight muscle Glycerol-PO4 FADH2 2 ATP per NADHc Malate-aspartate NADH 3 ATP per NADHc Mammalian muscle and liver Glycerol-PO4 Shuttle Cytosol CH2OH DHAP : NADH NAD+ CH2OH : HO-C-H C=O CH2OP Glycerol-PO4 CH2OP Membrane transporter CH2OH Flavoprotein dehydrogenase C=O CH2OP FADH2 2ATP FAD : CH2OH : HO-C-H CH2OP Mitochondria Malate-Aspartate P457 COO + COO NADH Aminotransferase H3N-C-H COO HO-C-H C=O CH2 Malate dehydrogenase CH2 a-Kg COO NAD+ CH2 COO GluCOO OAA L-malate Cytosol COO + a-Kg Mitochondria Glu COO H3N-C-H C=O CH2 COO Asp Aminotransferase CH2 Malate dehydrogenase COO HO-C-H NADH NAD+ COO 3ATP CH2 COO