Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
PIRAZINAMIDASA MYCOBACTERIUM TUBERCULOSIS Tuberculosis • Tuberculosis is an airborne communicable disease caused by Mycobacterium tuberculosis • 80% of tuberculosis is pulmonar • Infectious disease causing highest mortality worldwide Tuberculosis: Global epidemiology • • • • Infected Cases New cases Deaths = = = = 2 billion 20 million 8 million per year 2 million per year Source: Organization, W.H., Global Tuberculosis Control Surveillance, Planning, Financing. 2007. Factors threatening TB control • Areas with high prevalence • Association HIV/AIDS – TB • Increase in the number of multi-drug resistant tuberculosis (MDR-TB) Isoniazid and rifampin resistant strains •Occurs after inappropriate treatment •Increasing number of compromised drugs (XDR-TB strains) In Peru, TB control is improving but MDR-TB is increasing 60,000 50,000 Pulmonary TB 40,000 30,000 20,000 10,000 0 80 81 82 84 85 87 91 92 93 94 95 96 97 98 99 ´00 '01 Tto. 7,000 5,000 6,000 8,000 13,000 13,836 38,000 52,500 53,000 51,372 48,074 47,498 47,062 46,223 41,730 39,790 38,269 Dx 16,011 21,925 21,579 22,792 24,438 24,702 38,000 52,500 53,000 51,372 48,074 47,498 47,062 46,223 41,730 39,790 38,269 17.8 18 15.4 16 14 13.4 12 Multi-drug resistant TB 10 8 RP MDR P 6 4 2.4 3 2 0 1993 1996 1999 First line TB Treatment Drugs Isoniazid (H) Ethambutol (E) Rifampin (R) Pyrazinamide (Z) Effect Rapid growing Rapid growing Semi-dormant Semi-dormant/acid pH Sterilizing activity Reduction of TB treatment from 9 months to 6 months Pyrazinamide (PZA) • Only active against M. tuberculosis complex • Action against semi-dormant tubercle bacilli in acidic environments • Reduction of treatment time of (6 months) • Pro-drug converted by pyrazinamidase (PZase) in the active molecule • 30% of MDR-TB cases are resistant to (PZA) reported by INS based on the Wayne test PZA Mode of action Extracellular bacilli O N C NH PZA N 2 HPOA POA- + H+ Passive diffusion pyrazinamidase conversion Major mechanism of resistance Passive diffusion [POA-] Acid pH typical of an inflamated tissue Defective efflux H+ NAD Acidification metabolism? of cytoplasm HPOA Disruption of membrane energy and function Zhang, et al., 2004 PZA and pyrazinamidase pncA gene (561bp) Pyrazinamidase (181aa) β1 α1 β2 β3 α2 β4 α3 β5 α4 β6 PZA Major mechanism of resistance Highly diverse Mutations in pncA gene Along the entire gene Rare silent mutations Amino acid substitutions in pyrazinamidase β1 α1 β2 β3 α2 β4 Loss of enzimatic acitivity α3 β5 α4 β6 PZA resistance and pncA mutations pncA gene in PZA resistant strains No mutations (2 – 28%) Mutations (72 – 98%) PZase active PZase no activity PZase active Alternate mechanism Mutations in regulatory regions of PZase expression Mutations do not likely affect PZase structure Levels of activity rather than yes/no PZase inactive Mutations likely affect PZase structure Alternate mechanism pncA mutants characterization in PZA-resistant strains Mutations Novel mutationes DNA regions Amino acid number 1 50 100 150 pncA gene Mutations: – – – – 22 missense (74%) 3 nonsense (11%) 5 insertions (5%) 4 deletions (4%) Clustered 183 pncA cloning and Pzase expression pET28a:: His6-PncA E.coli BL21(DE3)pLys Broth LB + Kanamycin + IPTG Cells Purification by affinity chromatografy Cells rupture Freezen and sonication Purity of the fractions Tubes 10 11 12 13 14 M 15 16 Soluble portion Affinity chromatography Column His-Trap PZase elution with 60mM Imidazole 12% SDS-PAGE Protein concentration and dialysis - 10Kb AMICON Estimation of wild-type PZase kinetic parameters Lineweaver-Burk plot 1/Velocity (min/mM) Velocity (mM/min) Velocity vs. [Substrate] 2.0 1.5 1.0 0.5 0.0 0 5 10 15 20 y = 1.2131x + 0.5176 R2 = 0.9962 10 Slope = Km/Vmax 8 6 4 Intercept = 1/Vmax 2 0 0 1 2 3 4 1/PZA (1/mM) PZA (mM) Activity Km kcat Effic mM[POA].uM -1 [PZase].min-1 mM min-1 mM . Min-1 0.41 2.34 622 265 5 6 7 Kinetic parameters of PZase Km Kcat Efficiency Mutated region mM min-1 mM . Min-1 H51R Und 0.00 0.00 MBS D49N 0.6 0.19 0.3 MBS T135P 0.9 9.3 12.4 Close AS G78C 1.4 110 80 Loop D24D 1.1 133 128 Loop D12A 2.4 478 161 Close AS F94L 0.8 161 208 Close AS Y34D 2.3 514 219 Loop D12G 3.6 821 226 Close AS Wild type 2.1 574 280 -- K48T 1.5 536 377 Close MBS MBS = Metal binding site AS = Active site Low efficiency Some efficiency High efficiency 100 200 300 400 0 0 200 400 600 800 PZA MIC (ug/ml) 0 1000 PZA + PZase R = -0.92 P = <0.00001 0 R = -0.60 P = 0.038 0 R = -0.63 P = 0.0274 Efficiency (min-1) 100 200 300 400 Efficiency (min-1) 100 200 300 400 Pzase efficiency correlate with susceptibility parameters 20 40 60 80 %Growth in BACTEC 100 [PZA-PZase] Km Weak Wayne Negative POA + PZase kcat Efficiency Positive Theoretical model of M. tuberculosis H37RV PZase Nicotinamidase 37% sequence identity with Pzase Pyrococcus horikoshii 999 6 beta sheets 4 alpha helixs Active site: D8, A134, C138 Metal-binding site: H51, H71, D49 Pzase chelation 80mM EDTA Pzase Control PZase 6 h at 25˚C EDTA dialysis (Ultrafiltration) PZase Activity 0.7 Control PZase 0.6 Chelated PZase OD 0.5 0.4 0.3 10mM EDTA 0.2 20mM EDTA 40mM EDTA 0.1 0 1 2 3 4 Pzase activation Chelated Pzase FeSO4.7H2O + 30 min at 37˚C Metal ions + 3 min at 37˚C PZase Activity PZA Stop reaction 20% ferrous ammonium sulphate 0.1 M glycine–HCl buffer, pH 3.4 Absorbance at 450nm CuCl2.2H2O Cd(NO3)2.4H2O MgSO4.7H2O CoSO4.7H2O MnSO4.H2O CaCl2 Zn (NO3) 2 .6H2O 4000 Metal re-activation of metal-depleted H37Rv PZase 2000 Re-activation Zn Mn Mg Fe Cu Co Cd Ca No metal 0 Co > Mn> Zn > Cd id % Recovered activity = (metal-depleted PZase activity with metal /metal-depleted PZase activity with no metal) x 100. id No synergism Zn+Cd Mn+Zn Mn+Cd Co+Zn Co+Mn Co+Cd Cd Zn Mn Co No metal 0 2000 4000 Re-activation with combined metal of metal-depleted H37Rv PZase Effect of metals in the PZase activity of metal-depleted mutant enzymes (mM [POA] · µM-1 PZase · min-1) Mutations affecting the metal-binding site Effect of metals in the PZase activity of metal-depleted mutant enzymes 3 2 1 F94L K48T id id H51R Zn non-ch No metal Ca Cd Co Cu Fe Mg Mn 0 .01 .02 .03 .04 id PZase activity Zn non-ch No metal Ca Cd Co Cu Fe Mg Mn 0 Zn non-ch No metal Ca Cd Co Cu Fe Mg Mn 0 .25 PZase activity 4 .5 (mM [POA] · µM-1 PZase · min-1) Mutation affecting the metal-binding site X-ray fluorescent spectroscopy of recombinant H37Rv PZase Purified and concentrated E. coli extract without plasmid TRIS Purification buffer PZase in TRIS 0.3 Zn ions per PZase molecule Analysis of zinc in H37RV PZase by Atomic Absorption Spectroscopy Adicion estandar 0,25 Absorbancia 0,2 y = 0,03726x + 0,00423 R2 = 0,95627 0,15 0,1 0,05 0 -1 1 3 ug de Zn agregado 0.1 Zn ions per Pzase molecule 5 7