Download Yeast

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Patterns in expression profiles
point to mode of action
in drug discovery
© 2001,Pharmacia, Inc. - All Rights Reserved.
Antifungal therapy:
Opportunistic systemic infections: candidiasis and aspergillosis
Candida albicans is 4th most-frequently infectious hospital isolate
Nosocomial fungal infections affect > 2 million patient / year
Available therapies:
Polyenes (Amphotericin B): effective but with side effects
Azoles (Fluconazole, Itraconazole): safe but less effective
Candins (Cancidas): just approved
Model organism: Saccharomyces cerevisiae, aka baker’s yeast
Drug discovery objectives:
Characterization of novel agents
Have we seen this type of agent before?
What biological processes does it impact?
Are improvements making it better or different?
How can we measure activity?
Topics:
Transcript profiles with Affymetrix microarrays
Microarray profiles within an experimental class
Relationships between experiments
Identification of functional patterns
Relationships among responsive genes
Transcript profiles:
Transcript profile = snapshot of all mRNA species in sample
Yeast:
Stress:
Profile =>unstressed, normal growth
Profile => response to agent
? target pathway
? “secondary” response
? surrogate expression marker
Affymetrix Gene Chip Hybridization:
Result:
intensity value
for each mRNA
represented
on chip
Measures of [mRNA] agree:
fluconazole
9
Taqman ~ 1 / [mRNA]
(PCR cycle number)
voriconazole
terbinafine
8
PCR cycle number
GeneChip ~ [mRNA]
log (Chip Intensity)
itraconazole
amorolfine
ketoconazole
clotrimazole
PNU-144248E
untreated
fluconazole
terbinafine
voriconazole
clotrimazole
untreated
ketoconazole
7
6
5
4
3
PNU-144248E
amorolfine
itraconazole
2
2
2.5
3
3.5
log(Chip Intensity)
4
Experimental design:
Agents
X
Exposure
1
3
5
7
=
Treatment
Treatment profiles reveal similarity in response:
Treatments
genes
1
Aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
Signal
from chip
2
3
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
Treatment profiles:
4
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
Measure of similarity between
biological response to different treatments
Identify common biological response:
Distinguish a compound with distinct effect:
Correlation:
Pairwise Pearson
correlation coefficient
between each pair of
treatments
Correlations between experiments:
Biological effects, proof of concept:
farnesyl pyrophosphate
ERG9
8 chemical agents:
allylamine
ERG1
ERG7
ERG11
5 azoles
ERG24 3 genetic
morpholine
ERG25 changes:
Novel imidizole
ERG26
PNU-144248E
DERG6
ERG6
DERG2
ERG2
Define method to identify
ERG3
DERG5
responsive transcripts
ERG5
ERG24
ergosterol
Responsive genes:
Expressed above background
Significantly changed from untreated
XX
X
Changed in multiple related treatments
Response to ergosterol perturbation:
AcylCoA-> -> ERG19 -> farnesyl pyrophosphate
ERG9
Responsive genes in blue
ERG1
ERG7
ERG11, NCP1
ERG24
112 transcripts related to ergosterol
ERG25/ERG26
59 genes of unknown function
ERG6
52 “other” changed transcripts
ERG2
ERG3
ERG5
ERG4
ergosterol
Facets of response:
20 stressresponse
29 lipid, fatty-acid
sterol associated
36 mito
ergosterol
plasma membrane
inner mito membrane
Erg11p contains heme
12 hypoxic
5
13 hemeresponsive
16
membrane
-assoc.
5
vesicular
transport
5
cell wall
Signal
transduction
Stress
responses
Mitochondrial:
metabolism
energy production
translation
DNA synthesis /
repair / recombination
Structure
RNA synthesis
and processing
Major
Facilitator
Superfamily
Cell wall
biosynthesis
Amino acid
metabolism
Transporters
Lipid, sterol and
fatty acid, biosynthesis
Carbohydrate
metabolism
Protein Translation
Nucleoside, etc. metabolism
processing
Global patterns of responsive genes:
Each row is
histogram of
responsive genes
in given treatment
Second dimension -- gene profiles:
Treatment profiles / gene profiles
treatments
genes
1
Aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
2
3
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
4
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
Gene profiles:
Treatment profiles:
=> gene families
co-regulated
in response
to treatment
=> biological
similarity
Treatment profiles / gene profiles
Heat Map
Genes
profiles
A1
D1
B1
C1
B3
A3
D3
C3
A5
B5
A7
B7
Treatments
D7
C5
C7
Gene correlations
Heat Map
Pairwise Pearson
correlation
coefficients for
gene profiles
Rows 1
Rows 12
Rows 23
Rows 34
Rows 45
Rows 56
Rows 67
Rows 78
Rows 89
Rows 100
Rows 111
Rows 122
Conclusions:
Expression profiles:
identify responsive genes
find significant pathway(s) in response
find unanticipated responsive pathways
identify surrogate expression markers
identify agents eliciting similar responses
distinguish biological response to apparently similar agents
Acknowledgements:
Pharmacia:
Gary Bammert, ID Genomics
Chad Storer, ID Genomics
Mark Johnson, Computer-Aided Drug Discovery
Tom Vidmar, Biostatistics
Affymetrix:
Mike Lelivelt
Proteome:
Everyone supporting YPD
Spotfire:
Bill Ladd
Shawn Kenner
Related documents