Download Exponent Operations Worksheet #1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Exponent Operations Worksheet #1
Name________________________Per_____
Multiplication
Part 1: Expand each expression then evaluate
1.) 2 8 = _____ _____ _____ _____ _____ _____ _____ _____ = ______
2.) 5 3 =
3.) x 5 =
4.) 10 3 =
5.) 81  8 4 =
6.) 7 2  7 3 =
7.) x 5  x 4 =
8.) If two expressions have the same factor or base, what happens to the exponents when
the expressions are multiplied?
__________________________________________________________________________________________
__________________________________________________________________________________________
Example:
(7x2)(2x3)
Part 2: Simplify each expression.
9.) 2 3  2 4
10.) 81  8 3
12.) x 5  x 9
13.) 3 4  x 3  x 5
11.) t 4  t 4
Part 3: Find the product of the expressions.
14.) ( 6x 2 )( 4x 2 )
15.) (3 x 3 y 2 )(-6 y 5 )
17.) (10 g 3 h 8 v 6 )(11gh 8 )


19.)  2 2 x 3 y 4 (3) 2 x 4 y 4
16.) (5 p 3 )( m 8 p 2 )
18.) (4 f 9 h 3 )(5 f 6 )(3h 2 )

20.) *Challenge:
(3x a y b z c )( y f z g )
Exponent Operations Worksheet #2
Name________________________Per_____
Power to a Power
Part 1: Expand each expression and write the product.
1.) (2 3 ) 4 = _________ __________ _________ _________ = ____________
2.) ( p 2 ) 5 =
3.) ( x m ) 2 =
4.) (2 3 x) 2 =
5.) What is the fast way to simplify when you raise an exponent to another power (or what
can you do instead of expanding)?
__________________________________________________________________________________________
__________________________________________________________________________________________
Part 2: Find the product. Expand if it helps you.
6.) (2 x) 2
7.) (10 2 ) 3
8.) (3 2 x 6 ) 5
9.) (7 j 2 ) 3
10.) (8n 2 p) 3
11.) 2 (3a 2 ) 3
12.) (xy) ( x y )
2
 3x 2 
14.)  2 
 2y 
2
5
2 2



2
 3x 
15.)  2 
 4x 
2
 8x 2
13.)  2
 2x
Exponents Operations Worksheet #3
Name ______________________ Per_____
Division
Part 1: Expand each expression to find the quotient.
24
1.) 3 =
= _______________
2
2.)
3255
=
3  52
3.)
x8
=
x3
4.)
23 x 3 y 4
=
2  xy 2 z
= _______________
5.) Explain why you can subtract exponents when you are dividing two things with the same
base.
__________________________________________________________________________________________
__________________________________________________________________________________________
Part 2: Simplify to find the quotients.
a8
7 11
6.) 3
7.) 8
a
7
9.)
x 10
x4
c9
12.)
6c 4
10.)
12  g 8  h 4
g 3 h 5
2  x3 y8
13.)
4 y2
8.)
7  b5
b4
11.)
3 x 14 y 11
14.)
18 x 2
4  p11
8  p6
Part 3: Negative Exponents
15.) Anything to the zero power is ______________. Show why this happens by solving this
x5
problem. 5 = ________
x
Rewrite without negative exponents.
 5 x 13 y 5 z 2
20.) 
2
 35
a 12b 3
19.) 5 5
a b
 4c 5 
22.)  0 
 8d 
Exponent
44

17.) 6 x 4 x 10
16.) 6  c 3  d 2
3
 x 8 
23.)  11 
y 
Result



18.) 2 0  x 3

4
0
21.) ( g 3  g 2 ) 4
2
24.)
(2 x 3 )  ( x 4 ) 2
8 x11
25.) What is the pattern on the left side of the table with the
exponents?
43
42
41
40
4 1
4 2
26.) What is the pattern on the right side of the table with the results?
Related documents