Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2008 NAIST-UM (BTI) Synmposium Metabolic regulation of cysteine in bacteria and its application to cysteine production September 22, 2008 Hiroshi Takagi, Ph.D. Lab. of Cell Biotechnology Graduate School of Biological Sciences Nara Institute of Science and Technology Microbial production of amino acids Amino acid Microorganism -Glutamate L-Lysine L-Phenylalanine L-Threonine L-Glutamine L-Arginine C. glutamicum C. glutamicum C. glutamicum / E. coli E. coli C. glutamicum C. glutamicum L (L-Cysteine) (DL-Methionine) Market (tons/y) 1,000,000 250,000 8,000 4,000 1,300 1,200 (1,500) (350,000) No direct-fermentation process for sulfur-containing amino acids (Cys, Met) has yet been achieved. Industrial use and production methods of Cys ・Food ・Pharmaceutical ・Cosmetic ・New material ・Hydrolysis of human hairs ・Asymmetrical hydrolysis of ATC A world market of 4,000 tons a year A variety of applications Environmental issues Increase of demand Direct fermentation of glucose Pseudomonas thiazoliniphilum: DL-ATC (2-aminothiazoline-4-carboxylic acid) → → L-Cysteine Cysteine desulfhydrase: L-ClCH2CHNH2COOH + Na2S + H2O → L-Cysteine + NaCl + NaOH Metabolism and its regulation of Cys in E. coli 2- SO4 ( external ) L-Serine + Acetyl-CoA SO42APS SAT PAPS Feedback inhibition O-Acetyl-L-serine SO32- S2- OASS COOH H2N-C-H CH2 SH L-Cysteine (Cys) ・Feedback inhibition of SAT by Cys ・Cys degradation catalyzed by CD L-Cysteine CD Glutathione degradation ( Pyruvate, NH3, H2S ) L-Methionine In E. coli cells… ・No oversynthesis ・No accumulation Direct fermentation of Cys from glucose Methionine Acetyl-CoA Glucose Serine H2S O-Acetylserine Serine acetyltransferase (SAT) Cysteine Cysteine desulfhydrase (CD) Degradation 1) Enhancing the biosynthetic activity Functional improvement of serine acetyltransferase (SAT) 2) Weakening the degradation pathway Identification and the gene disruption of cysteine desulfhydrase (CD) Serine acetyltransferase (SAT) of E. coli Denk et al. (J. Gen. Microbiol., 133, 515, 1987) ・Isolation of a Cys+ revertant from a Cys- auxotroph (Cys: 30 mg/L) ・Gene cloning and its deduced amino acid sequence ・Identification of the Met256Ile mutation <Feedback inhibition of SAT activity by Cys> Relative activity (%) Enzyme Substrate 100 Active + site Allosteric site 75 50 ES-complex Ser Acetyl-CoA SAT Ser 25 0 Cysteine (endproduct) 25 50 75 L-Cysteine conc. (M) Acetyl-CoA 100 SAT (inactive) <site-directed mutagenesis by PCR> <mixed primers> Amino acid substitution of Met256 of the E. coli SAT 5’-AATGGAT GGG GACCAGC-3’ CCC AAA TTT Analysis of feedback inhibition and Cys productivity 256All- <1st PCR> A B 256All + A Wild-type Met256 N B C Altered Met256X N C Ligation Truncated N <2nd PCR> C Production of cysteine plus cystine <Strain> E. coli JM39-8 (SAT-deficient and Cys non-utilizing) <Medium> Cys production medium (1L) (pH 7.0) Glucose 30 g Na2S2O3 15 g NH4Cl 10 g KH2PO4 2g MgSO4・ 7H2O 1g FeSO4・ 7H2O 0.01 g MnCl2・ 4H2O 0.01 g Gly, L-Ile, L-Leu, L-Met 0.1 g each CaCO3 20 g <Cultivation> 30℃, Sakaguchi-flask, shaking <Determination of cysteine + cystine> Bioasay (Pediococcus acidilactici IFO3076) Cys production by expression of the mutant SATs Plasmid Amino acid residue at position 256 Activity remaining in the presence of 100 M cysteine (%) CySH + Cys (mg/L) 0.5 ND pCE Met (Wild-type) M256A Ala 24.1 790 ± 380 M256R Arg 32.1 600 ± 80 M256D Asp 24.2 580 ± 50 M256E Glu 17.3 710 ± 270 M256S Ser 27.0 610 ± 40 M256W Trp 18.6 610 ± 70 M256V Val 25.6 560 ± 70 -* 31.3 730 ± 110 M256Stop *, termination codon at position 256 Nakamori et al., Appl. Environ. Microbiol., 64, 1607-1611 (1998) Cys overproduction was achieved by expressing the mutant SAT. Error-prone PCR random mutagenesis into E. coli SAT E. coli wild-type SAT gene (cysE) pCE Error-prone PCR EcoRI XbaI EcoRI XbaI pUC19 EcoRI <Reaction mixture> 10 mM Tris-HCl ( pH 8.3 ) 50 mM KCl 1.5 mM MgCl2 0.01 M -mercaptoethanol 10% DMSO 0.5 mM MnCl2 0.5 M forward primer 0.5 M reverse primer 0.2mM dATP 1mM dGTP, dCTP, dTTP each 1U Taq DNA polymerase XbaI pHC Transformation of E. coli JM39-8 Characteristics of the E. coli mutant SATs Plasmid Activity remaining CySH + Cys in the presence of (mg/L) 100 M cysteine (%) Amino acid substitution 0.9 ND pCE M256A 24.1 790 pHC 6 51.9 210 ±170 N51K, R91H , H 233Y pHC 7 78.2 330 ±70 E166G, M201V pHC 8 37.1 260 ±50 T167K pHC 10 20.9 990 ±200 M201R pHC 11 16.3 740 ±120 M201T pHC 12 33.2 50 ±20 P252R pHC 13 28.9 960 ±460 S253L pCE M256I Takagi et al., FEBS Lett., 452, 323-327 (1999) Several amino acid residues other than Met256 are responsible for the feedback inhibition by Cys and the overproduction of Cys. SATs of Arabidopsis thaliana (Noji et al., J. Biol. Chem., 273, 32739-32745, 1998) Localization Feedback inhibition SAT-m SAT-p Mitochondria Chloroplast Insensitive Insensitive SAT-c Cytoplasm Sensitive SAT <Expression plasmids for the SAT cDNA> <Western analysis for the SAT expression> cysEp A. thaliana Ampr pEAS-m, pEAS-p SAT-m SAT-p E. coli wild-type SAT The A. thaliana SAT-m or SAT-p gene The E. coli cysE promoter The A. thaliana SATs are expressed in E. coli cells. Comparison of catalytic properties of recombinant SATs plasmid pEAS-m pEAS-p pCEM256I pCE SAT A. thaliana SAT-m A. thaliana SAT-p E. coli Met256Ile E. coli wild-type SAT activity (mU/min/mg) 27.9 21.3 88.0 2,273 100 100 100 100 100 100 100 88 24 100 1.5 Relative activity (%) for L-cysteine added (M) 0 10 100 ND ND : Not detected. The A. thaliana SATs were insensitive to feedback inhibition. Cys production by recombinant strains SAT SAT-m SAT-p E. coli Met256Ile ( A ) Growth (OD562) 0.91 ± 0.02 0.77 ± 0.10 0.64 ± 0.12 ( B ) L-Cysteine produced (mg/L) 1,580 ± 100 1,660 ± 200 870 ± 160 (B)/(A) 1,750 ± 100 2,140 ± 200 1,360 ± 70 Takagi et al., FEMS Microbiol. Lett., 179, 453-459 (1999) Expression of two cDNAs encoding SAT-m and SAT-p in E. coli cells significantly increased the Cys productivity. Enhancement of Cys biosynthetic activity 1) Functional improvement of the E. coli SAT (1) Site-directed mutagenesis into Met256 ・Desensitization to feedback inhibition by replacing Met with other residues → Met at position 256 is important for feedback inhibition by Cys ・Cys overproduction (ca. 800 mg/L) (2) PCR-random mutagenesis into cysE ・Identification of several residues other than Met256 involved in desensitization to feedback inhibition and Cys production 2) Use of the A. thaliana SATs (1) Expression of the A. thaliana feedback-insensitive SATs in E. coli cells (2) Improvement of Cys productivity (1,600 - 1,700 mg/L) Ser Arg89-Asp96 Kai et al., Prot. Eng. Des. Sel., 19, 163-167 (2006) Direct fermentation of Cys from glucose Methionine Acetyl-CoA Glucose Serine H2S O-Acetylserine Serine acetyltransferase (SAT) Cysteine Cysteine desulfhydrase (CD) Degradation 1) Enhancing the biosynthetic activity Functional improvement of serine acetyltransferase (SAT) 2) Weakening the degradation pathway Identification and gene disruption of Cys desulfhydrase (CD) A reaction catalyzed by Cysteine Desulfhydrase (CD) COOH CD H2N-C-H COOH C=O CH2 SH CH3 L-Cysteine Pyruvate + NH3 + H2S is generated during fermentation !! Cys degradation is occurred !! Cys degradation pathway is unknown ?? Analysis of Cys degradation pathway H2 S Identification of the E. coli CDs by activity staining Native-PAGE CD activity staining Cys CD H2S + BiCl3 (1) (2) = BiSO4 Black bands (3) (4) (5) At least, five CD proteins are newly detected in E. coli. E. coli CD (1) Determine the N-terminus sequence (1) 1 Purified sample E. coli Tryptophanase (TNase) Wild-type tnaA-disruptant Vector Vector + tnaA 15 MENFKHLPEPFRIRV・・・ MENFKHLPEPFRIRV・・・ A reaction catalyzed by TNase (the tanA product) L-Tryptophan → Indole + Pyruvate + NH3 ( 1 ) TNase (2)? TNase (the tnaA product) is one of the E. coli CDs. E. coli CD (2) <CD reaction> COOH ( 1 ) TNase (2) COOH CD H2N-C-H C=O + NH3 + H2S CH2 CH3 SH L-Cysteine Pyruvate <Cystathionine -lyase (CBL; the metC product) reaction> COOH L-Cysteine O-Succinyl-homoserine COOH H2N-C-H CH2 H2C COOH H2N-C-H S CH2 Cystathionine CBL COOH H2N-C-H C=O + NH3 + CH3 Pyruvate CH2 CH2 SH Homocysteine L-Methionine The CD and CBL reactions are the same. CBL accepts Cys as a substrate in vitro. CBL functions as a CD ? E. coli CD (3) - (5) Use of an E. coli library containing 4,388 kinds of open reading frame (ORF) lacZp X : lacZ promoter Vector X : ORF (total 4,388) Cmr CD activity staining pCN24-X + cysK + cysM + malY ( 1 ) TNase ( 2 ) CBL ( 3 ) O-Acetylserine sulfhydlase-A (OASS-A; cysK) ( 4 ) MalY regulatory protein (malY) ( 5 ) O-Acetylserine sulfhydlase-B (OASS-B; cysM) OASS (-A, -B) and MalY protein are identified as the E. coli CDs. List of the E. coli CDs ( 1 ) Tryptophanase (TNase; the tnaA product) Trp-degrading enzyme (1) ( 2 ) Cystathionine -lyase (2) (CBL; the metC product) Cystathionine-degrading enzyme ( 3 ) O-Acetylserine sulfhydlase-A (OASS-A; the cysK product) Cys-synthesizing enzyme ( 4 ) MalY regulatory protein (3) (5) (4) (the malY product) transcriptional regulator in mal expression ( 5 ) O-Acetylserine sulfhydlase-B (OASS-B; the cysM product) isomer of OASS-A !? Five CD proteins were identified in E. coli… Total CD activity Genotype total CD activity (mU/mg) Wild-type 20.6 tnaA 15.7 metC 15.0 cysK 18.2 cysM 17.9 malY 15.3 tnaA metC 9.6 tnaA metC cysM malY 9.1 tnaA metC cysK cysM malY 8.7 ・Total CD activities of all mutants were lower than wild-type. ・Even the quintet mutant still had a low level of CD activity. Cys production in the CD gene disruptants 1600 Cysteine productivity(mg / L) 1400 1200 Wild-type tnaA mutsnt 1000 metC mutsnt 800 cysM mutsnt malY mutant 600 4 genes mutant 400 200 0 0 24 48 72 96 Culture time (hr) ・Cys production in these mutants was higher than that in wild-type. ・CD gene disruption is effective in the production of Cys by E. coli. Growth of E. coli cells in the presence of Cys Cys inhibits the growth of E. coli cells. LB + 30 mM Cys 4.5 4.0 Growth (OD610) 3.5 2.5 Wild-type tnaA mutant metC mutant 2.0 cysK mutant 1.5 cysM mutant 3.0 malY mutant 1.0 0.5 0 0 3 6 9 12 15 18 21 24 Culture time (hr) ・The tnaA disruptant was significantly inhibited. ・TNase is a key enzyme in Cys degradation in E. coli ?? TNase induction by Cys Native-PAGE Cys (mM) 0 10 Northern blotting SDS-PAGE Cys (mM) 0 10 Cys (mM) 0 10 (kDa) 94・ 67・ 1.7kb 43・ 23s rRNA 30・ 20・ ・TNase synthesis is induced by Cys. ・TNase contributes mainly to Cys degradation. 16s rRNA Identification and gene disruption of the E. coli CDs 1) Identification of the E. coli CDs ( 1 ) Tryptophanase (TNase; the tnaA product) Trp-degrading enzyme ( 2 ) Cystathionine -lyase (CBL; the metC product) Cystathionine-degrading enzyme ( 3 ) O-Acetylserine sulfhydlase-A (OASS-A; the cysK product) Cys-synthesizing enzyme ( 4 ) MalY regulatory protein (the malY product) transcriptional regulator in mal expression ( 5 ) O-Acetylserine sulfhydlase-B (OASS-B; the cysM product) isomer of OASS-A !? 2) Construction of the CD gene disruptants The gene disruption is significantly effective for Cys production. 3) TNase contributes primarily to Cys degradation. Genome information-based Identification and analysis of the Cys transporter Enhancing the export system Glucose L-Cysteine Bcr Yamada et al., Appl. Environ. Microbiol., 72, 4735-4742 (2006) TolC Natthawut et al., Appl. Microbiol. Biotechnol., in press. Poster Enhancement of Cys export system Imbalance of cellular oxidation-reduction state Cys overproducer Mutant SAT gene Cys accumulation CD gene Growth inhibition Cys export Mutant SAT gene Cys transporter gene Improvement of Cys productivity ? CD gene ・Identification and analysis of Cys transporter ・Evaluation of Cys transporter on Cys productivity Screening of Cys transporter The growth of E. coli cells is inhibited by excess Cys (30 mM). E. coli cells with a lower level of CD activity would be much more sensitive to Cys due to Cys accumulation. The transporter that exports Cys and reverses the growth inhibition Px Wild-type pUC118-X Ampr 32 putative drug transporter genes Growth (OD610) Transporter X naA disruptant + transporter gene tnaA disruptant Screening of Cys transporter Culture time (hr) 6 emrAB Growth (OD610) 5 Wild-type 4 acrD, acrEF, bcr, cusA, emrKY, ybjYZ, yojIH 3 2 tnaA disruptant 1 0 0 6 12 Culture time (hr) 18 24 Genes that reversed the growth inhibition of tnaA disruptant by Cys: acrD, acrEF, bcr, cusA, emrAB, emrKY, ybjYZ, yojIH Intracellular Cys contents of E. coli cells Transporter X pUC118-X Ampr Intracellular Cys content (mg/L/OD610) Cys(30 mM) 3 2 1 0 vector vector Cys Wild-type emrAB emrKY yojIH acrEF bcr cusA acrD ybjYZ tnaA disruptant Genes that decreased intracellular Cys level of tnaA disruptant: acrD, acrEF, bcr, cusA, emrAB, emrKY, ybjYZ, yojIH List of Cys exporter candidates Gene Function bcr Bicyclomycin resistance emrAB Multidrug resistance emrKY Multidrug resistance acrEF Acriflavin resistance acrD Acriflavin resistance, Aminoglycosides efflux cusA Putative copper transporter ybjYZ Putative transporter yojIH Putative transporter No one knows whether these genes are involved in amino acid export. < Cys transport assay > + [35S]-Cys Cys uptake activity <Cys uptake > Cys uptake (nmol/mg cell wt) Cell suspension vector 2.0 ybjYZ ydeD bcr 1.0 0 0 10 Remaining labeled Cys content <Cys export> Increased export: bcr, acrEF, emrAB, (ydeD) Cys export (%) 100 bcr, ybjYZ,(ydeD) 30 Time (min) ⇒ Cys export rate Reduced uptake: 20 80 60 bcr ydeD 40 acrEF emrAB vector 20 < Cys uptake↓、Cys export↑ > bcr, ydeD 0 0 10 20 30 Time (min) Bcr overexpression promotes Cys export in E. coli cells. Cys production by E. coli cells expressing bcr Mutant SAT gene Enhancing Cys synthesis Pbcr bcr pUC118-bcr Enhancing Cys export Cys Concentration of Cys (mg/L/OD562) pACYC-M256I 1000 + bcr 800 600 400 + vector (pUC118) 200 0 24 Cys 48 Culture time (h) Bcr overexpression contributes to Cys production. 72 32 putative drug transporter genes Growth inhibition, Intracellular Cys level Identify the Bcr protein as a Cys transporter Export activity, Specificity, Cys production Bcr derives energy for Cys export from the proton gradient, and Cys may be the only amino acid exported by Bcr. Bcr overexpression contributes to Cys production Future plans Functional analysis (transcriptional regulation, physiological role) Improved function (export activity, substrate specificity) Molecular breeding of Cys overproducer L-Serine + Acetyl-CoA SO4 (external) Ser acetyltransferase Activated by OAS O-Acetylserine Feedback inhibition by Cys Enhance Cys biosynthesis 2- S2L-Cysteine Appl. Environ. Microbiol., 64, 1607, 1998; FEBS Lett., 452, 323, 1999; FEMS Microbiol. Lett., 179, 453, 1999; J. Biochem., 136, 629, 2004; FEMS Microbiol. Lett., 255, 156, 2006; Protein Eng. Des. Sel., 19, 163, 2006 etc. Cys transporter Export Cys desulfhydrase Enhance Cys transport Degradation (NH3, H2S, Pyr.) Weaken Cys degradation MINI-REVIEW Appl. Environ. Microbiol., 72, 4735, 2006; Appl. Microbiol. Biotechnol., in press. FEMS Microbiol. Lett., 217, 103, 2002; Appl. Microbiol. Biotechnol., 62, 239, 2003; Appl. Environ. Microbiol., 71, 4149, 2005 etc. Appl. Microbiol. Biotechnol., 73, 48, 2006 Real Scientists !! Fukui Pref. Univ. (1995-2006) Shin-ichiro Kobayashi Chitose Kobayashi Naoki Awano Akemi Kohdoh Tomohiro Oikawa Keiko Haisa Mizue Yamazaki Yutaka Haitani Hiroyuki Yamazawa Kyoko Inubushi Eri Maeda Dr. Masaaki Noji Dr. Kazuki Saito (Chiba Univ.) Dr. Kunihiko Nishino Dr. Akihito Yamaguchi (Osaka Univ.) Dr. Hirotada Mori (NAIST) Dr. Masaru Wada (Fukui Pref. Univ.) Dr. Shigeru Nakamori (Fukui Pref. Univ.) Ajinomoto Co., Inc. NAIST (2006-) Natthawut Wiriyathanawudhiwong Zhao-Di Li Dr. Iwao Ohtsu 大腸菌 SAT とシステイン生産の研究の流れ 研究者 研究概要 SATの フィードバック阻害 システイン生産量 (mg/L) Kredich (1983) Cys による制御の証明 (野生株) 感受性 Denk et al. (1987) SAT・一次構造の決定 Met256Ile 変異株の分離 感受性低下 30 Nakamori et al. (1998) Met256X の構築 Cys 分解能低下株 感受性低下 600 〜 800 Takagi et al. (1999) PCR ランダム変異の導入 Cys 分解能低下株 感受性さらに低下 シロイヌナズナ SAT 遺伝子の導入 非感受性 本研究 0 〜 1,000 ? シロイヌナズナ SAT を用いたシステイン生合成系の強化 Construction of mutant SATs E. coli chromosome PCR pBluescript 2.9 kb EcoRV cysE (1.2 kb) Ampr pCE 4.1 kb <Site-directed mutagenesis> Wild-type cysE Primer for introducing mutation (Met256X) PCR Ampr pCEX 4.1 kb Mutant cysE Selection of the Cys-overproducing strains Transformants expressing the mutant SAT gene Replica E. coli JM39 (the Cys auxotroph) M9 agar plates + Amp Halo formation of the Cys auxotroph Cys-overproducing strains 25 mutants → the DNA sequence Amino acid and DNA substitutions in the E. coli SAT Mutant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Amino acid substitution (Base substitution) E7V (A→ T) E7D (A→ T) N12I (A→ T) N12I (A→ T) A17D (C→ A) T19A (A→ G) E24K (G→ A) S29C (A→ T) N40S (A→ G) M48V (A→ G) N51K (C→ A) E68V (A→ T) W119X (G→ A) A127T (G→ A) V138M (G→ A) E166G (A→ G) T167K (C→ A) D173N (G→ A) D173G (A→ G) M201R (T→ G) M201T (T→ C) Q228P (A→ C) P252R (C→ G) S253L (C→ T) M256V (A→ G) L27P (T →C) F131L (T →A) S43R (T→A) P232L (C →T) R197H (G→A) Q258P (A →C) C23W (T→G) L36F (C →T) L120W (T→G) R91H (G→A) V130G (T→G) M201V (A→G) G270R (G→A) H233Y (C→T) D271G (A →G) E. coli CD (2) Wild-type vector metC disruptant vector + metC ( 1 ) TNase (the tnaA product) ( 2 ) CBL (the metC product) CBL (the metC product) is one of the E. coli CDs. Construction of the CD gene-disruptant Ampr pEL3 Δ-X A B A B Ampr ori (ts) ori (ts) A B X 42℃, LB medium + Amp Homologous recombination A B Ampr ori (ts) A B X X 37℃ LB medium E. coli chromosome A E. coli chromosome B Plasmid deletion → Amp-sensitive ・Construct the multiple CD gene disruptant ・Check the disruption by PCR and CD activity staining Pye et al., J. Biol. Chem., 279, 40729-40736 (2004) cysM 遺伝子産物・OASS-B について Cys 生合成経路において、O-acetylserine と S2- から Cys を合成する 酵素 O-acetylserine sulfhydlase-A (OASS-A) のアイソマーと推定されて いるが、その機能解析は全く行われていなかった L-Serine + Acetyl-CoA SAT O-Acetylserine OASS-A SO4 2(external) 遺伝子名 遺伝子の長さ (bp) タンパク質名 OASS-B !? 972 912 (OASS-A) (OASS-B) 323 303 2- ホモロジー (アミノ酸) L-Cysteine 機能 H2O cysM O-acetylserine sulfhydlase-A O-acetylserine sulfhydlase-B アミノ酸の長さ (aa) S cysK CD 発現制御 38%一致, 53%相似 Cys合成 Cys合成 !? CD !? CD CysBとN-Acetylserine による正の制御 CysBとN-Acetylserine による制御!? ダイマーを形成 硫黄取り込みパ−ミアーゼと クラスターを形成 Methionine degradation その他 SATとコンプレックス形成 Cys 分解能低下株の tnaA 領域 DNAシーケンス解析 野生株 Cys (mM) 0 10 Cys 分解能 低下株 0 10 TNase CBL +1 P tnaC tnaA P : プロモーター +1 : 転写開始点 tnaC : リーダーペプチド tnaA : TNase ORF 変異点なし !! 転写調節因子に変 <bcr 産物の排出メカニズム> bcr 産物:MF 型トランスポーターで、bicyclomycin 耐性に関与 排出機構はプロトン濃度勾配による能動輸送 Cys 取込み活性(nmol/mg dcw) アンカプラーで活性が阻害 (carbonylcyanide m-chlorophenylhydrazone; CCCP) <取込み活性> 2.5 CCCP の添加により、 取込み活性が減少 100 1.5 ベクター(+CCCP) 1.0 bcr(-CCCP) 0.5 bcr(+CCCP) 10 20 時間 (min) 30 Cys 排出率(%) ベクター(-CCCP) 2.0 0 <取込み活性> <排出率> 80 bcr(-CCCP) 60 ベクター(-CCCP) ベクター(+CCCP) 40 20 bcr(+CCCP) 0 10 20 時間 (min) 30 ⇒未知の取込み系を阻害? <排出率> CCCP の添加により、bcr 高発現株で、排出率が減少 ⇒bcr 産物の排出能を阻害 bcr 産物のCys 排出機構は、プロトン濃度勾配による能動輸送 <bcr産物の基質特異性の解析> <Cys 排出率> Cys 排出率 (%) 100 80 bcr 高発現株 60 40 ベクターのみ 20 0 Cys 同様に、他のアミノ酸について 排出率を測定 10 20 30 時間 (min) <使用アミノ酸 > 親水性アミノ酸: Pro, Ser 疎水性アミノ酸: Leu, Val 酸性アミノ酸 : Glu 塩基性アミノ酸: Arg 含硫アミノ酸 : Met bcr 高発現株、ベクター導入株 でアミノ酸排出率に差はなかっ た アミノ酸の性質、構造に関係なくCysを特異的に排出 Fig. 1 A L + 15 mM Cys C tolC BW25113 BW25113 (pLS219) (pLSTolC) tolC (pLS219) (pLSTolC) B 250 K 150 K 100 K 75 K L BW25113 (pCA24N) + 15 mM Cys 50 K TolC LamB 37 K OmpF+C OmpA (pTolC) tolC (pCA24N) (pTolC) YncD Fig. 2 A B L TolC AcrA H+ AcrB BW25113 ΔtolC ΔacrA ΔacrB ΔacrE ΔacrF ΔemrA ΔemrB ΔmacA ΔmacB + 10 mM Cys Fig. 3 A BW25113 ΔtolC ΔompA ΔompC ΔompF ΔompT ΔompX L + 10 mM Cys B ΔtolC (pCA24N) (pTolC) (pOmpA) (pOmpC) (pOmpF) (pOmpT) (pOmpX) L + 10 mM Cys Fig. 4 B 3.5 3.5 3 3 2.5 2.5 Growth (OD660) Growth (OD660) A 2 1.5 2 1.5 1 1 0.5 0.5 0 0 0 5 10 15 Culture time (h) 20 25 0 5 10 15 Culture time (h) 20 25 Fig. 5 B 6 40 Growth (OD660) 30 4 25 3 20 15 2 10 1 5 0 0 0 20 Culture time (h) 40 Concn of glucose (g/liter) 35 5 Concn of L-cysteine plus L-cystine (mg/liter) A 150 120 90 60 30 0 0 20 Culture time (h) 40 Fig. 6 B Concn of L-cysteine plus L-cystine (mg/liter) A 5 Growth (OD660) 4 3 2 1 1250 1000 750 500 250 0 0 0 20 Culture time (h) 40 0 20 Culture time (h) 40 Fig. 7 + DTT LB BW25113 / pCA24N ΔdsbA / pCA24N ΔtolC / pCA24N ΔtolC / pTolC ΔtolC / pDsbA 5 mM 10 mM