Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Single Cell Analysis with an Integrated Electrophoretic/ Electrochemical Chip Ching-Yu CHANG 1, 2, Tatsuya MURATA2, Yasufumi TAKAHASHI2, Ryota KUNIKATA2, Hitoshi SHIKU2, Hsien-Chang CHANG1, Tomokazu MATSUE2* 1-Institute of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan 2-Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan conductive substrate redox recycling S catalyze Pred Poxi secretion cell Oxidation current electrode Electrochemical Single Cell Measurement Interference: + + SNR: - Signal level: - Interference : - SNR: + Signal level: + Interference: + + SNR: - Signal level: - Interference: - - SNR: + + Signal level: + + Micro Well Structure 100 mm 30 mm 5 mm 15 mm LFVA (low flow velocity area) 25 mm Active vs. Passive Single Cell Trap Passive Active electrophoretic or dielectrophoretic force addressable, limited scale trapping force gravity or hydraulic force cell placement random, large scale Stabilization for the trapped cell by no additional force applied keeping on the voltage biocompatibility good concerns about the applied electrical field cell array one kind hybrid How to take advantages of active and passive traps? Chip Design 30 mm SU- 8 ITO Pt 30 mm 25 mm + - +2.0 V tape SU-8 electrode Trapping solution: 0.2 M sucrose Trapping voltage: 2.0 V vs. ITO Cell Manipulation Electrophoretic trapping - 2.0 V - + Hydraulic flush Electrophoretic repelling + 2.0 V + - Top View Steady-state Currents for Microelectrode i Ilim I lim 4nFDCr E disc electrode 4nFDCr I lim 4 L r parameters n: transferring electron / molecule F: Faraday constant D: diffusion constant C: substance conc. r: electrode radius L: recessed depth recessed disc electrode Analyst, 2004 (129) 1157-65 Model for Recessed UME on a Conductive Substrate a b ln H c(ln H )2 d (ln H )3 eL fL2 IT iT , 1 g ln H h(ln H )2 i (ln H )3 jL kL2 iT a 1.79862 g l r 0.67767 b 0.40135 c 0.16349 h 0.17304 d 0.1994 i j 0.015745 2.01384 e 1.79815 f 0.38238 K 0.33559 d conductive substrate normalized parameter H=l/r, L=d/r redox UME Chip Electrode Anal. Chem., 2007 (79) 5809-16 Micro Well Electrode Validation < 30 mm 5.5 nA 7.8 nA 4πnFDCr 2 I lim 4 L πr scan rate: 10 mV/sec 2E configuration, Ag/AgCl as RE+CE 5 mM K3Fe(CN)6 / 0.1 M KCl scan direction: 0.6 0 0.6 V ~ 12.9 mm L=23 mm I T = 1.07 (theoretical) I T =7.8/5.5= 1.42 Measurement of Secreted Alkaline Phosphatase SEAP p-aminophenylphosphate (PAPP) p-aminophenol (PAP) 0.3 V vs. Ag/AgCl NH2 HO NH2 O 0.1 V vs. Ag/AgCl + 2H+ +2 e- p-iminoqulnone (IQ) PAP ITO electrode PAPP/HEPES diffusion PAP PAPP IQ diffusion PAP PAP IQ SEAP recombinant HeLa Pt electrode SEAP: secreted alkaline phosphatase e- Redox Recycling on ITO Electrode detection voltage Dot line RE+CE ITO PAP WE Solid line RE+CE WE PAPP Measuring condition PAP 4.7 mM /HEPES (line a &b) PAPP 4.7 mM /HEPES (line c &d) HEPES buffer: HEPES 20 mM, NaCl 153 mM, KCl 5 mM, glucose 5 mM, pH 9.5 scan rate: 20 mV/sec scan direction: 0 0.6 0 V ALP-Bead Preparation + 0.3 V vs. Ag/AgCl n=3 UME wash with HEPES, suspend in 2.35 mMPAPP ALP (0.6U/mL) / HEPES overnight incubation RE+CE particle descending latex bead: 10 mm HEPES: pH 9.5 Single ALP-Bead Measurement iPAP depletion PAPP ibare iblk i PAPP bare bead PAP i ALP i PAPP i PAP ALP bead Real-time SEAP Secretion Monitoring SEAP Cell Micro well PAP calibration curve Conclusion Cell can be trapped and repelled by electrophoretic force. Micro well structure can provide a LFVA to stabilize the trapped cell during solution change. ITO electrode provide a conductive surface for redox recycling and then enhances the response current. The real-time non-continuous SEAP secretion was observed by this device. Thanks for your attention … Entrapment and measurement of a biologically functionalized microbead with a microwell electrode Ching-Yu Chang, Yasufumi Takahashi, Tatsuya Murata, Hitoshi Shiku, Hsien-Chang Chang* and Tomokazu Matsue* Lab Chip, 2009, 9, 1185–92 1 M H2SO4 1 M NaOH Pd微粒電析於GC表面之電位窗 不同電位電析Pd粒子於GC電極上的型態 電極 1 電極 2 電極 3 電極 1 電極 2 電極 3 電極 4 循環伏安法電析Pd粒子在SnO2電極上的型態 步階電位法電析Pd粒子在SnO2電極上的型態 電化學法測量不同Pd粒子表面型台的面積 電位階昇法:不同電透析條件下Pd(GOD)/GC電極於PBS(pH 7.4)中的循環伏安圖 酵素電極偵測葡萄糖的檢量線 Amino Acid Structures http://www.cem .msu.edu/~cem 252/sp97/ch24/ ch24aa.html Amino Acid a-carboxylic acid a-amino Side chain Alanine Arginine Asparagine Aspartic Acid Cysteine Glutamic Acid Glutamine 2.35 2.01 2.02 2.10 2.05 2.10 2.17 9.87 9.04 8.80 9.82 10.25 9.47 9.13 Glycine Histidine Isoleucine 2.35 1.77 2.32 9.78 9.18 9.76 6.10 Leucine Lysine Methionine 2.33 2.18 2.28 9.74 8.95 9.21 10.53 Phenylalanine 2.58 9.24 Proline 2.00 10.60 Serine 2.21 9.15 Threonine 2.09 9.10 Tryptophan Tyrosine Valine 2.38 2.20 2.29 9.39 9.11 9.72 12.48 pKa Values of Amino Acid 3.86 8.00 4.07 http://www.cem.msu. edu/~cem252/sp97/c h24/ch24aa.html 10.07