Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Pharmacometrics Introduction Yaning Wang, Ph.D. Team Leader, Pharmacometrics Office of Clinical Pharmacology Center for Drug Evaluation and Research Food and Drug Administration [email protected] Disclaimer: My remarks today do not necessarily reflect the official views of FDA 11/13/2008 NONMEM Estimation Methods [email protected] 1 Outline • Issues and opportunities in drug development • Model-based drug development • Bayesian statistics and its relationship with NONMEM • NONMEM estimation methods 11/13/2008 NONMEM Estimation Methods [email protected] 2 Issues in Drug Development • Low efficiency – – – – 11/13/2008 NME IND = NDA <20% of time Reported >50% failure rate in Phase 3 (Carl Peck, CDDS) Decreased NME NDAs despite increased INDs Cost per NME approved estimated at $1.7B NONMEM Estimation Methods [email protected] 3 Low Success Rate Across Different Diseases Kola I, Landis J.Can the pharmaceutical industry reduce attrition rates? Nat.Rev.Drug.Disc. Aug 2004. 11/13/2008 NONMEM Estimation Methods [email protected] 4 High Failure Rate Even in Late Development Kola I, Landis J.Can the pharmaceutical industry reduce attrition rates? Nat.Rev.Drug.Disc. Aug 2004. 11/13/2008 NONMEM Estimation Methods [email protected] 5 10-Year Trends of Major Submissions to FDA 11/13/2008 NONMEM Estimation Methods [email protected] 6 Investment Escalation Source: Windhover’s in Vivo: The Business & Medicine Report, Bain drug economics model, 2003 11/13/2008 NONMEM Estimation Methods [email protected] 7 Various Initiatives • National Institutes of Health (NIH) – Roadmap initiative • National Cancer Institute (NCI) – Specialized Programs of Research Excellence (SPOREs) • European Organization for the Treatment of Cancer (EORTC) – make translational research a part of all cancer clinical trials • National Translational Cancer Research Network – facilitate and enhance translational research in the United Kingdom • FDA – Critical Path Initiative 11/13/2008 NONMEM Estimation Methods [email protected] 8 2004 FDA Critical Path Initiative Application of New Scientific Knowledge to Drug Development: • • • Application of quantitative disease models to drug development Pharmacogenomics in drug development New imaging technologies may contribute biomarkers in drug development http://www.fda.gov/oc/initiatives/criticalpath/ 11/13/2008 NONMEM Estimation Methods [email protected] 9 2006 FDA Critical Path Update 11/13/2008 NONMEM Estimation Methods [email protected] 10 Model-Based Drug Development “The concept of model-based drug development, in which pharmaco-statistical models of drug efficacy and safety are developed from preclinical and available clinical data, offers an important approach to improving drug development knowledge management and development decision-making” Adapted from Lewis B. Sheiner, “Learning vs Confirming in Clinical Drug Development”, Clin. Pharmacol. Ther., 1997, 61:275-291. 11/13/2008 NONMEM Estimation Methods [email protected] 11 Terminology • Model-based drug development – – – – – Pharmacokinetics/Pharmacodynamics (PK/PD) Modeling and simulation Exposure-response Quantitative clinical pharmacology Quantitative disease and drug models • Pharmacometrics-Pharmacometricians • Areas involved: clinical pharmacology, statistics, pathophysiology, biology, bioengineering 11/13/2008 NONMEM Estimation Methods [email protected] 12 DRUG MODEL PLACEBO/DISEASE MODEL Surrogate Morbidity#2 Mortality Surrogate 0 2 4 6 8 6 30 Other races Male 0 10 140 200 TIME 80 120 160 Other races Female Body Weight TIME % Compliance 0 20 40 60 0 80 Black Female Surrogate High dose Low dose PATIENT/CLINICAL TRIAL MODEL 80 120 160 % Drop-out 2 4 150 0 50 400 200 0 100 200 Caucasian Female 80 120 180 Black Male Disease Drug Trial Models Exposure Surrogate Exposure TIME 100 200 Caucasian Male Toxicity Relative Risk Morbidity#1 QD TID Patient Population 11/13/2008 NONMEM Estimation Methods [email protected] 13 Applications in FDA Review • Exposure-response analysis of efficacy and safety data in NDA review for the choice of dosing regimen (s) • Dose adjustment in special populations (hepatic, renal, gender, age and drug interactions) based on intersubject variability and risk assessment • Routine use of population PK and PD data analysis to understand variability and to provide evidence for label claims • Issuing guidance to assist the industry in using these tools • Case studies – Leveraging Prior Quantitative Knowledge to Guide Drug Development Decisions and Regulatory Science Recommendations: Impact of FDA Pharmacometrics During 2004-2006, Journal of Clinical Pharmacology (2008) 48: 146-157 – Impact of Pharmacometric Reviews on New Drug Approval and Labeling Decisions - A Survey of 31 New Drug Applications Submitted Between 2005-2006, Clinical Pharmacology and Therapeutics (2007) 81: 213-221 – Impact of Pharmacometrics on Drug Approval and Labeling Decisions - A Survey of 42 New Drug Applications, The AAPS Journal, 7(3): E503-E512, 2005 11/13/2008 NONMEM Estimation Methods [email protected] 14 Tools for Modeling and Simulation • • • • • • • 11/13/2008 NONMEM (UCSF, Globomax) SAS (SAS Institute Inc) Splus (Insightful Corporation) or R (Free) WinBUGS (MRC Biostatistics, Free) ADAPT II (USC, Free) WinNonLin/WinNonMix (Pharsight) Trial Simulator (Pharsight) NONMEM Estimation Methods [email protected] 15 Basic Statistics 1.0 1.0 0.8 0.8 0.6 0.6 • Random Variable (Y) 0.4 0.4 – Discrete (gender, pain score) – Continuous (body weight, clearance) 0.2 0.2 0.0 0.0 0 1 0 1 0.020 rdn 0.02 0.015 • Distribution (histogram) 0.015 0.010 – Binomial – Normal – Lognormal 0.005 0.010 0.005 0.0 0.0 • Probability Function (P(Y=y)) 20 40 40 60 60 80 80 100 120 140 100 120 140 160 rdn 0.4 0.5 0.6 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.1 0.2 0.3 – Probability Mass Function (PMF) – Probability Density Function (PDF) 1 1 11/13/2008 NONMEM Estimation Methods 2 2 3 3 [email protected] 4 4 rdn 5 5 6 6 7 7 16 Normal Distribution 1 P(Y y) e 2 Y ~ N ( , ) 2 2 0.04 2 ( y )2 0.03 0.04 0.02 P(y) dens[order(rdn)] 0.03 0.02 0.01 Y~N(100, 102) 0.0 0.0 0.01 80 80 11/13/2008 NONMEM Estimation Methods 100 100 sort(rdn) Y 120 120 [email protected] 17 Joint, Marginal and Conditional Probabilities Survival (Y2=0) Not survival (Y2=1) P(Y1) Early stage (Y1=0) Late stage (Y1=1) 0.72 0.02 0.74 0.18 0.08 0.26 0.90 0.10 1.00 P(Y2) Joint probability: P(Y1=0,Y2=0)=0.72 Marginal probability: P(Y1=0)= 0.90 Conditional probability: P(Y2=0|Y1=0)= 0.72/0.90=0.80 P(Y1 0) P(Y1 0,Y2 0) P(Y1 0,Y2 1) Conditiona l 11/13/2008 P (Y2 0 | Y1 0) P (Y1 0, Y2 0) P (Y1 0) Joint Marginal NONMEM Estimation Methods [email protected] 18 Marginal and Conditional Probabilities Survival (Y2=0) Not survival (Y2=1) P(Y1) Early stage (Y1=0) Late stage (Y1=1) 0.72 0.02 0.74 0.18 0.08 0.26 0.90 0.10 1.00 P(Y2) Conditional probability: P(Y2 0 | Y1 0) 0.72 / 0.9 0.8, P(Y2 0 | Y1 1) 0.02 / 0.1 0.2 Marginal probability: P(Y2 0) P(Y2 0,Y1 0) P(Y2 0,Y1 1) P(Y2 0 | Y1 0) P(Y1 0) P(Y2 0 | Y1 1) P(Y1 1) 0.8 0.9 0.2 0.1 0.74 For continuous variables: P(Y2 ) P(Y1 , Y2 )dY1 P(Y2 | Y1 ) P(Y1 )dY1 Marginal probability: weighted average of conditional probability 11/13/2008 NONMEM Estimation Methods [email protected] 19 Bayes’ Theorem P (Y1 , Y2 ) P (Y2 | Y1 ) P (Y1 ) P (Y1 , Y2 ) P (Y1 | Y2 ) P (Y2 ) P(Y1 ,Y2 ) P(Y2 | Y1 ) P(Y1 ) P(Y1 | Y2 ) P(Y2 ) P (Y1 | Y2 ) P (Y2 ) P (Y2 | Y1 ) P (Y1 ) 11/13/2008 NONMEM Estimation Methods [email protected] 20 Parameter • Unknown but fixed (Frequentist) Y ~ N ( , ) 2 • Unknown and random (Bayesian) Y ~ N ( , ) 2 ~ N ( , ) 2 (Prior distribution of ) Hyperparameters • Unknown hyperparameters – Hyperprior (Full Bayesian) – Estimation (Empirical Bayesian) 11/13/2008 NONMEM Estimation Methods [email protected] 21 Prior, Likelihood and Posterior P (Y , ) P (Y | ) P ( ) P ( | Y ) P (Y ) Likelihood Posterior Distribution Marginal Distribution 11/13/2008 P (Y | ) P ( ) P ( | Y ) P (Y ) Prior Distribution P(Y ) P(Y | ) P( )d NONMEM Estimation Methods [email protected] 22 Prior, Likelihood and Posterior ~ N ( , 2 ) Y | ~ N ( , 2 ) P (Y | ) P ( ) P ( | Y ) P (Y ) 1 1 2 2 1 / n |Y ~ N( y , ) 1 1 1 1 1 1 2 2 2 2 2 2 /n /n /n 11/13/2008 NONMEM Estimation Methods [email protected] 23 Posterior Likelihood 0.2 pdens 0.3 0.4 Shrinkage 0.1 Prior n 0.0 2 -10 0 ˆ | Y Y pdens 0.1 0.2 0.3 0.4 0.3 0.2 0.0 0.0 0.1 pdens 20 0.4 10 xp -10 -10 0 10 0 10 20 20 xp xp 11/13/2008 NONMEM Estimation Methods [email protected] 24 A Simple Example • Unknown parameter (): long-term systolic blood pressure (SBP) of one particular 60-year-old female • 4 measurements with a mean Y 130 and a standard deviation =5 • Survey of the same population (60-year-old female): mean SBP =120 and standard deviation =10 11/13/2008 NONMEM Estimation Methods [email protected] 25 Estimation of • Frequentist – Point estimate: ˆ Y 130 – Interval estimate (95%CI) Y 1.96 n 130 1.96 * 2.5 • Bayesian – Posterior distribution P(|Y) – Posterior mean ˆ | Y 129.4 – 95% credible interval 129.4 1.96 * 2.4 11/13/2008 NONMEM Estimation Methods [email protected] 26 0.15 Prior, Likelihood and Posterior Individual parameter (posterior) Population Distribution (prior) 0.0 0.05 pdens 0.10 Individual data (likelihood) 80 100 120 140 160 xp Long-term systolic blood pressure (SBP) of 60-year-old woman 11/13/2008 NONMEM Estimation Methods [email protected] 27 Population PK Variability Sheiner, 1992 11/13/2008 NONMEM Estimation Methods [email protected] 28 NONMEM and Bayesian Dose Yij exp( ki t ij ) ij Vi ki 2 2 p( yij | i , ) ~ N ( f (t ij , i ), ) i k2i p( i | , ) ~ MVN p ( , ) k V ii ki TVk exp( ki ) Vi TVV exp(Vi ) 2 ki p( i | ) ~ MVN p (0, ) p( i | ) ~ MVLN p ( , ) ki Vi Vi k kiVi V2i V 2 ki Vi Vi log(TVk ) log(TVV ) i: Posthoc estimate (Empirical Bayesian Estimate) because , , 2 are all estimated based on MLE 11/13/2008 NONMEM Estimation Methods [email protected] 29 A Simple Example Dose ( k i )t ij yij e ij f ( k ,i , t ij ) ij V i ~ N (0, 2 ) ij ~ N (0, 2 ) yij: the jth observation for the ith individual Assume: only k is the unknown parameter to be estimated Goal: search for the estimate, k̂ , that can minimize the following objective function OBJ ( k ) 2 log Li ( k ) i where Li(k) is the marginal likelihood of k for ith individual 11/13/2008 NONMEM Estimation Methods [email protected] 30 What Is Marginal Likelihood ? nj ( yij f ( k , ,t ij ))2 nj 1 2 Li ( k ) e 2 P(Yi|k) P(Yi|k,i) j 1 2 2 1 e 2 P(i) d h ( , k )d i P(Yi,i|k) 4 This is just the area under the curve (AUC) of h(,k) versus at a fixed k 2 0 1 h(ETA) h () 3 k=1 -2 -1 0 1 2 ETA 11/13/2008 NONMEM Estimation Methods • Each fixed k leads to different AUC • Assuming only 1 subject, k̂ is associated with maximum AUC. k̂ is called the maximum likelihood estimator (MLE) of k • Even though AUC is a function of k, it cannot be expressed as a closed-form equation of k (difficulty of nonlinear mixed effect modeling) [email protected] 31 k̂ Grid Search to Find -0.5 0.0 0.5 1 2 h(ETA) 3 0 1 0 0 -1.0 k=1.1 3 k=0.7 2 h(ETA) 2 1 () hh(ETA) 3 k=0.3 4 4 Imagine we can try every possible k and evaluate AUC with numerical integration (similar to trapezoidal rule with very dense data) 4 • 1.0 -1.0 -0.5 0.0 0.5 ETA -1.0 1.0 -0.5 0.0 0.5 1.0 ETA 0.8 1.0 ETA (k) AUC AUC(ke) yall 0.4 y 0.6 1.5 1.0 0.5 0.2 k=0.3 k=0.7 k=1.1 0 2 4 6 8 10 time(hr) Time 11/13/2008 kˆ 0.74 0.0 NONMEM Estimation Methods 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 k ke [email protected] 32 Estimation Methods • NONMEM – Laplacian – First order conditional estimate (FOCE) – First order (FO) • SAS – Adaptive Gaussian Quadrature – Importance sampling – FO • Splus – Lindstrom and Bates Algorithm 11/13/2008 NONMEM Estimation Methods [email protected] 33 What is LAPLACIAN doing? • Approximate h() with another function LAP() so that AUC is a close-form function of k h ( , k )d LAP ( , k )d AUC i i 4 4 4 d 2 log hi ( ) g i " (ˆ ) d 2 ˆ k=1.1 0 0 1 1 2 h(ETA) h(ETA) 3 3 k=0.7 3 2 1 0 or h () LAP () h(ETA) k=0.3 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 NONMEM Estimation Methods 0.0 0.5 1.0 ETA ETA ETA 11/13/2008 (k ) 2 AUCi _ LAP ( k ) hi (ˆ ) gi " (ˆ ) -1.0 i _ LAP 2 Li ( k ) [email protected] 34 What is FOCE doing? • After Laplacian approximation, the second derivative, g i " (ˆ ) , is further approximated by H gi ' (ˆ ), a function of the first derivative d log hi ( ) gi ' (ˆ ) Li ( k ) h ( , k )d LAP ( , k )d AUC i i i _ LAP 4 4 4 k=0.7 k=1.1 h(ETA) 1 2 0 0 0 1 1 2 h(ETA) 3 3 3 k=0.3 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 NONMEM Estimation Methods 0.0 0.5 1.0 ETA ETA ETA 11/13/2008 ( k ) AUCi _ FOCE ( k ) 2 hi (ˆ ) H gi ' (ˆ ) AUCi _ FOCE ( k ) () or h () FOCEh(ETA) ˆ 2 d [email protected] 35 What is FO doing? • Approximate h() with another function FO() and also approximate the second derivative, gi " (0) , with a function of the first derivative H g ' (0) i h ( , k )d FO ( , k )d AUC i i -1.0 -0.5 0.0 0.5 1.0 h(ETA) 3 k=1.1 1 -1.0 -0.5 ETA 0.0 0.5 1.0 -1.0 ETA 11/13/2008 gi '( 0 ) 2 2 H g i '( 0 ) 0 1 2 h(ETA) 3 k=0.7 0 h(ETA) 2 1 0 FO () or h () 3 k=0.3 (k ) 4 4 4 AUCi _ FO ( k ) 2 hi (0) e H gi ' (0) i _ FO 2 Li ( k ) 0.0 0.5 1.0 ETA NONMEM Estimation Methods -0.5 [email protected] 36 Which one is the best? aucgq True auclap LAP aucfoce FOCE aucfo FO Marginal Likelihood 1.7 1.2 kˆFO 0.83 k̂True kˆ LAP 0.74 kˆFOCE 0.72 0.7 LAP is the best even though occasionally FOCE, even FO, is closer to the true marginal likelihood 0.2 0.2 11/13/2008 0.4 0.6 NONMEM Estimation Methods 0.8 k 1.0 1.2 [email protected] 1.4 37 Proportional Residual Error Model Dose ( k i )t ij yij e (1 ij ) f (k ,i , t ij )(1 ij ) V i ~ N (0, 2 ) ij ~ N (0, 2 ) yij: the jth observation for the ith individual Assume: only k is the unknown parameter to be estimated 11/13/2008 NONMEM Estimation Methods [email protected] 38 8 8 FOCE FO 8 LAP 8 FOCEI** 8 LAPI* 0.5 1.0 0.5 1.0 6 2 0 8 1.0 6 4 h(ETA) 2 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 0.5 1.0 ETA 6 ETA h(ETA) 6 2 h(ETA) 0.0 0.5 0 -0.5 2 -0.5 0.0 ETA 8 -1.0 0 -1.0 -0.5 4 1.0 4 h(ETA) 6 0.5 6 h(ETA) 0.0 ETA 4 2 6 h(ETA) 0.0 ETA 2 -0.5 -1.0 1.0 2 -0.5 0 -1.0 0.5 0 -1.0 6 1.0 0.0 ETA 0 1.0 -0.5 8 0.5 2 0.5 -1.0 1.0 2 0.0 ETA 0 0.0 ETA 0.5 0 -0.5 4 h(ETA) 6 4 2 -0.5 0.0 ETA 8 -1.0 k=1.1 0 -1.0 -0.5 6 h(ETA) 6 2 0 1.0 8 0.5 0 -1.0 8 1.0 4 0.5 4 0.0 ETA 4 h(ETA) 6 4 2 0.0 ETA h(ETA) 6 2 0 -0.5 k=0.7 0 -0.5 8 -1.0 4 h(ETA) 4 -1.0 1.0 8 0.5 4 0.0 ETA 8 -0.5 8 -1.0 4 0 0 2 2 4 h(ETA) 6 6 k=0.3 -1.0 ETA -0.5 0.0 0.5 ETA 1.0 -1.0 -0.5 0.0 ETA *: LAPI, Laplacian with interaction is available in NONMEM VI **: FOCEI, first-order conditional estimate with interaction 11/13/2008 NONMEM Estimation Methods [email protected] 39 Which one is the best? 2.2 aucgq True auclapi LAPI aucfocei FOCEI auclap LAP FOCE aucfoce FO aucfo Marginal Likelihood 1.8 1.4 ˆ 0.83 k ˆ FO k̂True k LAPI 0.69 kˆFOCEI 0.7 k̂ LAP kˆFOCE 0.72 LAPI is the best and LAP is worse than FOCEI for proportional error model 1.0 0.6 0.2 0.4 0.6 0.8 ke 11/13/2008 NONMEM Estimation Methods k 1.0 [email protected] 1.2 40 A Two-Dimensional Example Dose ( k 1 i )t ij yij e ij f (k ,V ,1i ,2 i , t ij ) ij V 2i 2 0 i ~ N (0, ) 1 2 2 ij ~ N (0, ) 0 2 yij: the jth observation for the ith individual Assume: k and V are the unknown parameters to be estimated Goal: search for the estimates, k̂ and V̂ , that can minimize the following objective function OBJ ( k ,V ) 2 log Li ( k ,V ) i where Li(k, V) is the marginal likelihood of k and V for ith individual 11/13/2008 NONMEM Estimation Methods [email protected] 41 What Is Marginal Likelihood ? nj nj 1 Li ( k ) e 2 ( yij f ( k ,V , ,t ij ))2 j 1 2 1 e 2 1 12 12 1 2 2 e 22 22 d1d 2 h ( , i 1 2 , k ,V )d1d 2 This is just the volume under the surface (VUS) of h(1, 2, , k, V) versus 1 and 2 at a fixed (k,V) h (1, 2) k=1 and V=1 11/13/2008 NONMEM Estimation Methods • Each fixed pair (k,V) leads to different VUS • If k̂ and V̂ are associated with maximum VUS. They are the maximum likelihood estimators (MLEs) of k and V • Even though VUS is a function of k and V, it cannot be expressed as a closed-form equation of k and V [email protected] 42 LAPLACIAN, FOCE, FO Volumes vs True Volume FOCE FO h (1, 2) h (1, 2) LAPLACIAN 2 11/13/2008 NONMEM Estimation Methods 2 [email protected] 2 43 Summary for Estimation Methods • The approximation of true marginal likelihood is analogous to approximating an irregular shape with a symmetric shape whose AUC or VUS can be easily calculated • The difference among LAPLACIAN, FOCE and FO is mainly the thinness and height of the symmetric shapes • In general, the shape generated by LAPLACIAN method is the closest to the true shape, but the shape from FOCE is almost equally close • For models with - interaction, taking the interaction into account seems more important than avoiding first-order approximation (FOCEI vs LAP) Reference: Derivation of Various NONMEM Estimation Methods, Yaning Wang, Journal of Pharmacokinetics and Pharmacodynamics, 34: 575-93, 2007 11/13/2008 NONMEM Estimation Methods [email protected] 44 Full Bayesian for PopPK Dose Yij exp( ki t ij ) ij Vi p( yij | i , ) ~ N ( f (t ij , i ), ) ki i Vi k2i p( i | , ) ~ MVN p ( , ) k V ii k V V2 2 p( 2 ) ~ IG (a , b) 11/13/2008 2 p( ) ~ MVN p ( , H ) NONMEM Estimation Methods k i i V i p( ) ~ IW ( R, ) [email protected] 45 Acyclic Structure H R MVN a W b G 1 MVN Dose Model 2 Time 2 N Data 11/13/2008 NONMEM Estimation Methods [email protected] 46