Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Dealing with censored data in linear and non-linear models Wan Hui Ong Clausen Birgitte Biilmann Rønn DSBS/FMS 26 Apr 2006 Slide no 1 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Overview • Background • Model • Estimation • Implementation • Examples • Simulation • Conclusion Slide no 2 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Censored PK data • PK data: Pharmacokinetic data • Concentration of drug/preparation over time • Disposition of the drug/preparation • Example 1: Biphasic insulin • Three subcutaneous injections a day • Concentrations measured over 24 hours Slide no 3 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Biphasic insulin concentration over time – three subcutaneous injections Censored at 13pmol/l Slide no 4 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Censored PD data • PD data: Pharmacodynamic data • Effect of the drug/preparation • Measurements of the effect over time • Example 2: Dose-response trial with inhaled insulin • 5 dose levels given in iso-glycaemic clamp • Glucose infusion rate measured over 10 hours Slide no 5 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Cumulated glucose infusion rate versus dose 9 8 7 log(AUC) 6 5 4 3 2 1 0 -1 -4 -3 -2 log(dose) -1 0 aerx -1560/c urrent - 25A P R 2006 - plot_indi.s as /pres entation/plot_indi_gir_aerx _outlier.c gm Slide no 6 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Censored GIR observations • The method (manual clamp) might not be sufficiently sensitive, when the ’true’ glucose need is very low • AUC(0-10h)GIR valued 0 are instead included in the analysis as being less than a treshold value, (e.g. 3.5). Slide no 7 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Analysis with censored data: • ’Usual’ solution: • Treat observations as missing • Problem: • Biased estimate of mean • Biased estimated of variance • Simple solution: • Obtain original data when possible Slide no 8 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • μ μcensored c σ σcensored Model with normal distributed error Linear or non-linear mean structure and general covariance structure: Yi fi( bi) i, where Yi is the observation vector for subject i, β is the vector of fixed parameters, bi is the vector of random effects, bi~N(0,Ψ) mutually independent and independent of εi, the residual error vector, εi~N(0,Σ). Slide no 9 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Marginal likelihood function for fixed effects parameters with full data: exp ( yi f ( , bi ))T 1 ( yi f ( , bi )) / 2 exp bi 1bi / 2 l dbi p ½ q ½ (2 ) (2 ) yi ( yi , f ( , bi ), ) (bi ,0, )dbi yi Slide no 10 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • T Marginal likelihood function for fixed effects parameters with censored data: l ( yi , f ( , bi ), ) yij C (C , f ( , bi ), ) (bi ,0, )dbi yij C Slide no 11 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Approximate likelihood inference • The intergral can rarely be solved explicitly • for repeated measurements • For non-linear mean function (in the random effects) • Intergral approximations must be used • Laplace approximation or Adaptive Gaussian quadrature See eg.Wolfinger, R.D. (93) Laplace’s approximation for nonlinear mixed effects models, Biometrica 80:791-795, Davidian,M., Giltinan, D.M. (95) Nonlinear Models for Repeated Measurements Data. London: Chapman & Hall, Pinheiro, J.C., Bates, D.M. (1995). Approximations to the log-likelihood function in nonlinear mixed-effects model. J.Computat.Graph.Statist. 4:12-35, or Vonesh, E.F. Chinchilli, V.M. (97). Linear and Nonlinear Models for the Analysis of Repeated Measurements. New York: Marcel Decker, Inc. Slide no 12 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Cumulated glucose infusion rate -after dosing with 5 different doses • Primary interest: 9 regression on log(dose) recieving the lowest dose level are nonresponders wrt GIR • Treshold C=3.5 7 6 log(AUC) • 6 out of 13 subjects 8 5 4 3 2 1 0 -1 -4 -3 -2 log(dose) -1 0 aerx-1560/current - 25A P R 2006 - plot_indi.sas/presentation/plot_indi_gir_aerx_outlier.cgm Slide no 13 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Cumulated glucose infusion rate Linear mixed model: log( AUCij ) log( doseij ) U i ij with intercept α, slope β, random subject effect, Ui~N(0,ω2) and residual εij~N(0,σ2dose) with variace depending on dose level Slide no 14 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Estimation with PRC NLMIXED in SAS proc nlmixed data=PDdata; parms intercept=9 slope=1 vlow=13 vnlow=0.1 s1randsubj=-1.9 s1s2=-2 s2randsubj=1.4; if (treatment=1) then randsubj = rand1; else randsubj = rand2; m = intercept + slope*logdose + randsubj; if (low_dose=0) then ll = -(lauc-m)**2/(2*vnlow) - 0.5*log(2*3.14159*vnlow); if (low_dose=1) then do; if cens=0 then ll = -(lauc-m)**2/(2*vlow) - 0.5*log(2*3.14159*vlow); if cens=1 then ll = log(probnorm((3.5-m)/sqrt(vlow))); end; model lauc ~ general(ll); random rand1 rand2 ~ normal([0,0],[exp(s1randsubj), exp(s1s2), exp(s2randsubj)]) subject=subj_id; run; Slide no 15 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Estimates -from analysis of log(AUC(0-10h)GIR) Intercept Slope AUCGIR (REML) 8.92 1.15 Imputed values [8.62; 9.22] [1.01; 1.28] (ML) 8.92 1.15 Imputed values [8.63; 9.22] [1.02; 1.28] (ML) 8.94 1.16 Censored [8.63; values 9.25] CV: CV: CV: Between subjects Higher doses Low dose 38% 41% 372% 37% 40% 372% 37% 40% 167% [1.03; 1.30] Slide no 16 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Example: PK data Slide no 17 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Biphasic insulin concentration over time – three subcutaneous injections 70 out of 873 serum insulin concentrations were reported as < LLoQ at 13pmol/l Slide no 18 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • PK Example: Compartment model dIs j dt dI f j dt δ( t - t j ) (1 - α)D j K fs Is j δ( t t j ) α D j K pf j I f j K fs I s j 3 K pf j I f j dI j1 K xp I dt Vi Slide no 19 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Nonlinear PK models Two-level random effects model Level 1: between-subject variations on all parameters, diagonal variance structure Level 2: For Kpf, ln K pf ij ln K pf bi bi, j Fixed effects, estimates (log-scale) Between subject variance Between injection (within subject) variance Variance (residuals) Kpf (min-1) 0.0087 (-4.7496) 0.59662 0.39482 25.18302 Kfs (min-1) 0.0056 (-5.1916) 2.10942 Kxp (min-1) 0.0190 (-3.9610) 0.57262 Vi (L Kg-1) 0.9584 (-0.0425) 0.45222 Vary Clausen W.H.O., De Gaetano A. & Vølund A. (2005) Pharmacokinetics of Biphasic Insulin Aspart Administered by Multiple Subcutaneous Injections: Importance of Within-subject Variation. Research report 09/05 Slide no 20 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Does this approximate approach leads to better estimates? Slide no 21 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Simulation study: Theophylline data Slide no 22 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Simulation study: First-order open-compartment model Ka Central compartment Ke V=Cl/Ke DK a K e ct (e K e t e K a t ) Cl(K a - K e ) Slide no 23 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • D: Ka: Ke: Cl: Dose Absorption rate Elimination rate Clearance Simulation study – cont’ • 1000 simulations • 12 subjects • 10 concentrations at t = 0, 0.25, 0.5, 1, 2, 3.5, 7, 9, 12, 24h • Dose = 4.5mg • lKa = 0.5, lCl = -3, lKe = -2.5 • lKa and lCl are allowed to vary randomly, bi ~ N(0, ψ), where ψ is diagonal, 0.36 and 0.04 respectively • 36% of the simulated data <LLoQ (3mg/l) Slide no 24 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Mean estimates – Laplacian Approx ___________________________________________________________ lKa lCl lKe ψlK a ψlCl σ2 ___________________________________________________________ True value 0.500 -3.000 -2.500 0.360 0.040 0.490 Full data 0.498 -3.016 -2.505 0.280 0.036 0.480 0.498 -3.015 -2.504 0.279 0.036 0.475 LLoQ=3mg/l Suggested method Omit data 0.661 -3.154 -2.680 0.254 0.029 0.442 ___________________________________________________________ Clausen, W.H.O., Tabanera, R., Dalgaard, P. (2005) Solvng the bias problem for censored pharmacokinetic data. Research report 05/05 University of Copenhagen. Slide no 25 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Mean estimates – AGQ (5 abscissae) ___________________________________________________________ lKa lCl lKe ψlK a ψlCl σ2 ___________________________________________________________ True value 0.500 -3.000 -2.500 0.360 0.040 0.490 Full data 0.495 -3.011 -2.498 0.286 0.037 0.476 0.491 -3.008 -2.492 0.287 0.037 0.471 LLoQ=3mg/l Suggested method Omit data 0.635 -3.142 -2.661 0.266 0.030 0.432 ___________________________________________________________ Clausen, W.H.O., Tabanera, R., Dalgaard, P. (2005) Solvng the bias problem for censored pharmacokinetic data. Research report 05/05 University of Copenhagen. Slide no 26 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 • Conclusion • Models with closed-form representation • The method could be applied using PROC NLMIXED available in SAS • Models without closed-form representation • a differential equation solver is necessary • With censored data, the same approach can be applied – need some programming work • The results from simulation study shows that bias introduced by left censoring is almost fully removed. Slide no 27 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •