Download Dealing with censored data in linear and non

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Dealing with censored data in
linear and non-linear models
Wan Hui Ong Clausen
Birgitte Biilmann Rønn
DSBS/FMS 26 Apr 2006
Slide no 1 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Overview
• Background
• Model
• Estimation
• Implementation
• Examples
• Simulation
• Conclusion
Slide no 2 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Censored PK data
• PK data: Pharmacokinetic data
• Concentration of drug/preparation over time
• Disposition of the drug/preparation
• Example 1: Biphasic insulin
• Three subcutaneous injections a day
• Concentrations measured over 24 hours
Slide no 3 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Biphasic insulin concentration over time –
three subcutaneous injections
Censored at 13pmol/l
Slide no 4 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Censored PD data
• PD data: Pharmacodynamic data
• Effect of the drug/preparation
• Measurements of the effect over time
• Example 2: Dose-response trial with
inhaled insulin
• 5 dose levels given in iso-glycaemic clamp
• Glucose infusion rate measured over 10 hours
Slide no 5 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Cumulated glucose infusion rate
versus dose
9
8
7
log(AUC)
6
5
4
3
2
1
0
-1
-4
-3
-2
log(dose)
-1
0
aerx -1560/c urrent - 25A P R 2006 - plot_indi.s as /pres entation/plot_indi_gir_aerx _outlier.c gm
Slide no 6 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Censored GIR observations
• The method (manual clamp) might not be
sufficiently sensitive, when the ’true’
glucose need is very low
• AUC(0-10h)GIR valued 0 are instead
included in the analysis as being less than
a treshold value, (e.g. 3.5).
Slide no 7 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Analysis with censored data:
• ’Usual’ solution:
• Treat observations as
missing
• Problem:
• Biased estimate of mean
• Biased estimated of
variance
• Simple solution:
• Obtain original data
when possible
Slide no 8 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
μ μcensored
c
σ
σcensored
Model with normal distributed error
Linear or non-linear mean structure and general
covariance structure:
Yi  fi( bi)  i,
where Yi is the observation vector for subject i, β is
the vector of fixed parameters, bi is the vector of
random effects, bi~N(0,Ψ) mutually independent
and independent of εi, the residual error vector,
εi~N(0,Σ).
Slide no 9 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Marginal likelihood function for fixed
effects parameters
with full data:


exp  ( yi  f (  , bi ))T  1 ( yi  f (  , bi )) / 2 exp  bi  1bi / 2
l  

dbi
p
½
q
½
(2 ) 
(2 ) 
yi
    ( yi , f (  , bi ), )   (bi ,0,  )dbi
yi
Slide no 10 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
T
Marginal likelihood function for fixed
effects parameters
with censored data:
l     ( yi , f (  , bi ), )
yij C
  (C , f (  , bi ), )   (bi ,0,  )dbi
yij C
Slide no 11 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Approximate likelihood inference
• The intergral can rarely be solved
explicitly
• for repeated measurements
• For non-linear mean function (in the random
effects)
• Intergral approximations must be used
• Laplace approximation or Adaptive Gaussian
quadrature
See eg.Wolfinger, R.D. (93) Laplace’s approximation for nonlinear mixed effects models,
Biometrica 80:791-795, Davidian,M., Giltinan, D.M. (95) Nonlinear Models for Repeated
Measurements Data. London: Chapman & Hall, Pinheiro, J.C., Bates, D.M. (1995).
Approximations to the log-likelihood function in nonlinear mixed-effects model.
J.Computat.Graph.Statist. 4:12-35, or Vonesh, E.F. Chinchilli, V.M. (97). Linear and Nonlinear
Models for the Analysis of Repeated Measurements. New York: Marcel Decker, Inc.
Slide no 12 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Cumulated glucose infusion rate
-after dosing with 5 different doses
• Primary interest:
9
regression on
log(dose)
recieving the lowest
dose level are nonresponders wrt GIR
• Treshold C=3.5
7
6
log(AUC)
• 6 out of 13 subjects
8
5
4
3
2
1
0
-1
-4
-3
-2
log(dose)
-1
0
aerx-1560/current - 25A P R 2006 - plot_indi.sas/presentation/plot_indi_gir_aerx_outlier.cgm
Slide no 13 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Cumulated glucose infusion rate
Linear mixed model:
log( AUCij )      log( doseij )  U i   ij
with intercept α, slope β, random subject effect,
Ui~N(0,ω2) and residual εij~N(0,σ2dose) with
variace depending on dose level
Slide no 14 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Estimation with PRC NLMIXED in SAS
proc nlmixed data=PDdata;
parms intercept=9 slope=1 vlow=13 vnlow=0.1 s1randsubj=-1.9 s1s2=-2 s2randsubj=1.4;
if (treatment=1) then randsubj = rand1;
else randsubj = rand2;
m = intercept + slope*logdose + randsubj;
if (low_dose=0) then ll = -(lauc-m)**2/(2*vnlow) - 0.5*log(2*3.14159*vnlow);
if (low_dose=1) then do;
if cens=0 then ll = -(lauc-m)**2/(2*vlow) - 0.5*log(2*3.14159*vlow);
if cens=1 then ll = log(probnorm((3.5-m)/sqrt(vlow)));
end;
model lauc ~ general(ll);
random rand1 rand2 ~ normal([0,0],[exp(s1randsubj), exp(s1s2),
exp(s2randsubj)])
subject=subj_id;
run;
Slide no 15 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Estimates
-from analysis of log(AUC(0-10h)GIR)
Intercept
Slope
AUCGIR
(REML)
8.92
1.15
Imputed
values
[8.62;
9.22]
[1.01;
1.28]
(ML)
8.92
1.15
Imputed
values
[8.63;
9.22]
[1.02;
1.28]
(ML)
8.94
1.16
Censored [8.63;
values
9.25]
CV:
CV:
CV:
Between
subjects
Higher
doses
Low dose
38%
41%
372%
37%
40%
372%
37%
40%
167%
[1.03;
1.30]
Slide no 16 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Example: PK data
Slide no 17 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Biphasic insulin concentration over time –
three subcutaneous injections
70 out of 873 serum insulin concentrations were
reported as < LLoQ at 13pmol/l
Slide no 18 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
PK Example: Compartment model
dIs j
dt
dI f j
dt
 δ( t - t j )  (1 - α)D j  K fs Is j
 δ( t  t j )  α D j  K pf j I f j  K fs I s j
3
K pf j I f j
dI 
j1

 K xp I
dt
Vi
Slide no 19 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Nonlinear PK models
Two-level random effects model
Level 1: between-subject variations on all
parameters, diagonal variance structure
Level 2: For Kpf, ln K pf ij  ln K pf  bi  bi, j
Fixed effects,
estimates
(log-scale)
Between
subject
variance
Between injection
(within subject)
variance
Variance
(residuals)
Kpf (min-1)
0.0087
(-4.7496)
0.59662
0.39482
25.18302
Kfs (min-1)
0.0056
(-5.1916)
2.10942
Kxp (min-1)
0.0190
(-3.9610)
0.57262
Vi (L Kg-1)
0.9584
(-0.0425)
0.45222
Vary
Clausen W.H.O., De Gaetano A. & Vølund A. (2005) Pharmacokinetics of
Biphasic Insulin Aspart Administered by Multiple Subcutaneous Injections:
Importance of Within-subject Variation. Research report 09/05
Slide no 20 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Does this approximate approach leads
to better estimates?
Slide no 21 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Simulation study: Theophylline data
Slide no 22 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Simulation study:
First-order open-compartment model
Ka
Central
compartment
Ke
V=Cl/Ke
DK a K e
ct 
(e  K e t  e  K a t )
Cl(K a - K e )
Slide no 23 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
D:
Ka:
Ke:
Cl:
Dose
Absorption rate
Elimination rate
Clearance
Simulation study – cont’
• 1000 simulations
• 12 subjects
• 10 concentrations at
t = 0, 0.25, 0.5, 1, 2, 3.5, 7, 9, 12, 24h
• Dose = 4.5mg
• lKa = 0.5, lCl = -3, lKe = -2.5
• lKa and lCl are allowed to vary randomly, bi ~
N(0, ψ), where ψ is diagonal, 0.36 and 0.04
respectively
• 36% of the simulated data <LLoQ (3mg/l)
Slide no 24 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Mean estimates – Laplacian Approx
___________________________________________________________
lKa
lCl
lKe
ψlK
a
ψlCl
σ2
___________________________________________________________
True value
0.500
-3.000
-2.500
0.360
0.040
0.490
Full data
0.498
-3.016
-2.505
0.280
0.036
0.480
0.498
-3.015
-2.504
0.279
0.036
0.475
LLoQ=3mg/l
Suggested
method
Omit data
0.661
-3.154 -2.680 0.254
0.029
0.442
___________________________________________________________
Clausen, W.H.O., Tabanera, R., Dalgaard, P. (2005) Solvng the bias problem for
censored pharmacokinetic data. Research report 05/05 University of Copenhagen.
Slide no 25 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Mean estimates – AGQ (5 abscissae)
___________________________________________________________
lKa
lCl
lKe
ψlK
a
ψlCl
σ2
___________________________________________________________
True value
0.500
-3.000
-2.500
0.360
0.040
0.490
Full data
0.495
-3.011
-2.498
0.286
0.037
0.476
0.491
-3.008
-2.492
0.287
0.037
0.471
LLoQ=3mg/l
Suggested
method
Omit data
0.635
-3.142 -2.661 0.266
0.030
0.432
___________________________________________________________
Clausen, W.H.O., Tabanera, R., Dalgaard, P. (2005) Solvng the bias problem for
censored pharmacokinetic data. Research report 05/05 University of Copenhagen.
Slide no 26 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •
Conclusion
• Models with closed-form representation
• The method could be applied using PROC NLMIXED
available in SAS
• Models without closed-form representation
• a differential equation solver is necessary
• With censored data, the same approach can be applied
– need some programming work
• The results from simulation study shows that bias
introduced by left censoring is almost fully
removed.
Slide no 27 • Wan Hui Ong Clausen and Birgitte B. Rønn 26/4-2006 •