Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

History of macroeconomic thought wikipedia , lookup

Rostow's stages of growth wikipedia , lookup

Ragnar Nurkse's balanced growth theory wikipedia , lookup

Transformation in economics wikipedia , lookup

Macroeconomics wikipedia , lookup

Transcript
Unbalanced Industry Demand and Supply Shifts:
Implications for Economic Growth
in Canada and the United States
Anik Dufour, Jianmin Tang, and Weimin Wang
Presentation to
The 2008 World Congress on National Accounts and Economic
Performance Measures for Nations
May 12–17, 2008
MEPA/APME
Introduction: motivation
Real GDP is non-additive
Y  i y
r
r
i
r
or
A proxy
~r
r
Y  i y i
MEPA/APME
or
r
i
hi y
Y
 i
H
H hi
~r
r
Y
hi yi
 i
H
H hi
2
Introduction: how does an industry influence real
aggregate GDP in the chained-Fisher index?
MEPA/APME
–
Real industry output
–
Industry output prices
3
Introduction: what drive a change in industry output
and price?
MEPA/APME
–
Supply shift, and
–
Demand shift
4
Introduction: supply shifts and demand shifts are often
unbalanced across industries.
MEPA/APME
–
Positive supply shifts:
• more for the manufacturing
• less for some services industries
–
Positive demand shifts:
• More for services
• Less for goods
5
Introduction: production resources will be reallocated
under unbalanced industry demand and supply shifts
MEPA/APME
6
Objective
• What are the industry contributions to
MEPA/APME
–
aggregate GDP growth, or
–
aggregate labour productivity growth?
7
Real GDP
Vr 
v
i
i
P
v
 y

i
 mi 
Pv
 piy y ir  pim mir
i 
v
P

y r
m
r
~
~
p
y

p
m
 i i i i







,
i
V , V r and P v as nominal GDP, real GDP and GDP deflator.
vi be industry nominal value added.
y i , y ir and piy are industry nominal gross output, the real gross output, and the
gross output deflator
mi , mir and pim are industry nominal intermediate inputs, the real intermediate
inputs, and the intermediate input deflator
y
~
pi and ~
pim are the industry real prices of gross output and the intermediate inputs,
defined as ~
p y  p y /P v and ~
p m  pm / Pv
i
MEPA/APME
i
i
i
8
Real GDP growth from year z to year t
V
r
z t
Vt r  V zr
1


V zr
V zr

1
V zr
 ~p y
y
iz
r
it
 ~p
y
it
 
y itr  ~
pizy y izr  ~
pitm mitr  ~
pizm mizr

i
 

 
 
 y izr  ~
pity  ~
pizy y itr  y izr  ~
pity  ~
pizy y izr
i
 
 

 
 
1
m
r
r
m
m
r
r
m
m
r
~
~
~
~
~
p
m

m

p

p
m

m

p

p
m
 iz it iz
it
iz
it
iz
it
iz
iz
V zr i
~
pizy y izr  y itr  y izr ~
pity  ~
pizy y itr  y izr ~
pity  ~
pizy 



 ~y

r
r
r
y
~
V z  y iz
piz
y iz
piz 
i
~
pizm mizr  mitr  mizr ~
pitm  ~
pizm mitr  mizr ~
pitm  ~
pizm 





r
r
m
r
m
~
~
V z  miz
piz
miz
piz
i

 y iz r
m
 
y z t  ~
p zyt  y zrt ~
p zyt  iz m zrt  ~
p zmt  m zrt ~
p zmt
Vz
i  Vz






,

x z t is the growth rate of variable x over the period from z to t
MEPA/APME
9
Industry contributions to real GDP growth
 y iz r
miz r   y iz ~ y
miz ~ m 
CPCi  
y z t 
m z t   
p z t 
p z t 
Vz
Vz
 Vz
  Vz

 y iz r ~ y
miz r ~ m 
 
y z t p z t 
m z t p z t  .
Vz
 Vz

1st term: pure quantity effect
2nd term: pure price effect
3rd term: the interaction of the first two effects.
MEPA/APME
10
Major desirable properties
 Consistent with real GDP in the chained-Fisher index
 Additive for any long period
 Invariant to base-year
MEPA/APME
11
Canada: industry contribution to aggregate GDP growth
1981-2000
MEPA/APME
12
US: industry contribution to aggregate GDP growth
1981-2000
MEPA/APME
13
Aggregate labour productivity
 yi  mi 

r
V
V
Xr 
 V  i V
H P H
P H
 piy yir  pim mir 
 piy hi xiy  pim hi xim 
   

  
V
V
P
H
P
H
i 
 i 


i




hi ~ y y ~ m m
pi xi  pi xi   li ~
piy xiy  ~
pim xim
H
i
~
s yxy  ~
s m xm ,

i
i
i
i


i
H is total hours worked; X r is labour productivity
hi is industry hours worked
xiy and xim are industry real gross output per hour worked and real intermediate
input per hour worked
~
si y  ~
piy li is industry gross output relative size ( l i  hi H and ~
piy being real
gross output price)
~
si m  ~
pim li is industry intermediate input relative size ( l i  hi H and ~
pim being
real intermediate input price).
MEPA/APME
14
Aggregate labour productivity growth from year z to year t
X zvt
X tv  X zv
1


X zv
X zv

1
X zv
~

 s x
y
iz
y
it
~


 s
y
it
 
xity  ~
sizy xizy  ~
sitm xitm  ~
sizm xizm

i
 

 
 
 xizy  ~
sity  ~
sizy xity  xizy  ~
sity  ~
sizy xizy
i
 
 

 
 
1
m
m
m
m
m
m
m
m
m
m
~
~
~
~
~
s
x

x

s

s
x

x

s

s
x
 iz it iz it iz it iz it iz iz
X zv i
~
sizy xizy  xity  xizy ~
sity  ~
sizy xity  xizy ~
sity  ~
sizy 



 ~y 
v 
y
y
y
~
X z  xiz
siz
xiz
siz 
i
~
sizm xizm  xitm  xizm ~
sitm  ~
sizm xitm  xizm ~
sitm  ~
sizm 



 ~m

v 
m
m
m
~
X z  xiz
siz
xiz
siz
i

 y iz y
m
 
x z t  ~
s zyt  x zyt ~
s zyt  iz x zmt  ~
s zmt  x zmt ~
s zmt
Vz
i  Vz


MEPA/APME




.

15
Industry contributions to
aggregate labour productivity growth
 y iz y
miz m   y iz ~ y
miz ~ m 
CPCi  
x z t 
x z t   
s z t 
s z t 
Vz
Vz
 Vz
  Vz

 y iz y ~ y
miz m ~ m 
 
x z t s z t 
x z t s z t .
Vz
 Vz

1st term: the pure productivity effect
2nd term: the relative size effect
3rd term: the interaction of the first two effects.
MEPA/APME
16
Major desirable properties
 Consistent with real GDP in the chained-Fisher index
 Additive for any long period
 Invariant to base-year
MEPA/APME
17
Relative size by industry in Canada and the U.S.
MEPA/APME
18
Canada: industry contribution to aggregate
labour productivity growth, 1981-2000
MEPA/APME
19
U.S.: industry contribution to aggregate
labour productivity growth, 1981-2000
MEPA/APME
20
Conclusions
1.
This paper provides a decomposition technique to study industry
contribution to aggregate output and labour productivity growth.
The technique is consistent with real GDP in the chained-Fisher
index and has several desirable properties.
2.
The framework distinguishes the industry contribution from
changes in the industry output and changes in industry’s output
price. It shows that over the period 1981-2000, the service sector
was the major contributor to both real GDP growth and aggregate
labour productivity growth.
3.
The estimate of the contribution for the service sector is much
higher than estimates using traditional methods that focus only on
the quantity effect. By ignoring the price effect, traditional methods
underestimate the contributions of service industries with rising real
output prices to real GDP growth and aggregate labour productivity
growth.
MEPA/APME
21
MEPA/APME
22