Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
A Global Macroeconomic Forecasting Model for the Philippines Ruperto Majuca, Ph.D (Illinois), J.D. De La Salle University, Manila 51st Philippine Economic Society Annual Meeting November 2013 (Makati City, Philippines) Outline Introduction The Model’s Stochastic Equations Estimation Methods Estimation Results Summary of Findings and Conclusions Table of Contents Introduction The Model’s Stochastic Equations Estimation Methods Estimation Results Summary of Findings and Conclusions Motivating Questions How does a slowdown in U.S. or a U.S. debt default affect PH economy, directly & indirectly via effects on EU, China, Japan, ASEAN? ■ How does a debt crisis in EU, or China slowdown, affect U.S., China, Japan, ASEAN, and PH directly & indirectly? ■ What has greater impact on PH, shocks from the U.S., EU, China, Japan, ASEAN, or its own shocks? ■ What are the ripple effects of the shocks to Philippine GDP, unemployment, inflation, interest rates, exchange rates, etc.? Research Interests Economic & financial linkages PH with ASEAN, U.S., EU, China, Japan, & those economies’ linkages with each other ■ Transmission of shocks from U.S., E.U., Japan, and China to ASEAN, & PH ■ Quantifying the ripple effects to ASEAN & AMSs’ GDP growth, inflation, interest rates, exchange rate, & unemployment ■ Implications for policy and macroeconomic management Research Methodology, 1 Traditional PH models (equation-by-equation OLS, ECM) NEDA QMM PIDS Ateneo (AMFM), others Simultaneity bias, exogeneity issue Estimates are biased and inconsistent Increasing sample cannot cure bias in estimates Lucas (1976) critique Coefficient estimates are not policy invariant Lucas: conclusions and policy advice based on these models are invalid and misleading Research Methodology, 2 Post Lucas critique. Now standard: modern, dynamic quantitative economics Dynamic stochastic general equilibrium (DSGE models) Global projection models Utilizes state of the art: Bayesian methods This work: global projection model to analyze interplay of key macroeconomic variables across countries/regions U.S., E.U., Japan, China, ASEAN, PH GDP growth, inflation, interest rates, exchange rate, unemployment The Global Projection Model Designed to capture cross-regions and crosscountry macroeconomic linkages (e.g., US, EU, Japan, China, ASEAN, AMS) Traces cross-border ripple effects of key macroeconomic variables (GDP growth, inflation, interest rates, exchange rates, unemployment) Bayesian estimation techniques Priors plus Bayesian updating via Kalman filter; Markov Chain Monte Carlo Table of Contents Introduction The Model’s Stochastic Equations Estimation Methods Estimation Results Summary of Findings and Conclusions GPM Stochastic Equations, 1 Potential Output NAIRU Equilibrium Real Interest Rate 𝑟𝑖,𝑡 = 𝑅𝑖,𝑡 − 𝑅𝑖,𝑡 GPM Stochastic Equations, 2 Equilibrium Real Exchange Rate Δ𝑍𝑖,𝑡 = 100Δ log 𝑆𝑖,𝑡 − (𝜋𝑖,𝑡 − 𝜋𝑢𝑠 ,𝑡 )/4 GPM Stochastic Equations, 3 Output Gap (Aggregate Demand / IS Curve) Inflation (New Keynesian Phillips Curve) GPM Stochastic Equations, 4 Uncovered Interest Parity (Bilateral Real Exchange Rate) Policy Interest Rate (Taylor Type Rule) Unemployment Rate GPM Stochastic Equations, 5 Equations Incorporating BLT_US Table of Contents Introduction The Model’s Stochastic Equations Estimation Methods Estimation Results Summary of Findings and Conclusions Bayesian Estimation Mixture between classical estimation and calibration of macro models Puts some weight on the priors and some weight on the data Combine prior and MLE estimation via Kalman filter Recover posterior distribution via MCMC (Metropolis Hastings) Estimation Strategy Start with GPM4 (US, EU, Japan, China); estimate coefficients ■ Proceed with GPM5 (US, EU, Japan, China + ASEAN), fixing coefficient for GPM4. Assumes ASEAN doesn’t change GPM4 coefficients ■ Then proceed with GPM6 (US, EU, Japan, China, ASEAN + Philippines), mutatis mutandis ■ 250,000 MH draws each stage; first 30% used as burn-in Data Requirements Consumer price index Real gross domestic product Nominal interest rate Nominal exchange rate Unemployment rate Bank lending variable for US CPI, GDP and ER are in logs Table of Contents Introduction The Model’s Stochastic Equations Estimation Methods Estimation Results Summary of Findings and Conclusions Estimation Results: GPM5 Parameters alpha1_AS alpha2_AS alpha3_AS beta1_AS beta2_AS beta3_AS gamma1_AS gamma2_AS gamma4_AS lambda1_AS lambda2_AS lambda3_AS rho_AS phi_AS tau_AS rr_bar_AS_ss growth_AS_ss beta_reergap_AS Prior distribution beta gamm beta gamm beta gamm beta gamm gamm beta gamm gamm beta beta beta norm norm gamm Prior mean 0.750 0.100 0.500 0.650 0.150 0.150 0.750 1.100 0.500 0.500 0.400 0.050 0.500 0.600 0.050 1.500 5.000 0.050 Prior s.d. 0.1000 0.0500 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 0.2000 0.1000 0.1000 0.0100 0.2000 0.1000 0.0200 0.1000 0.2000 0.0200 Posterior mode 0.8221 0.0687 0.4512 0.6353 0.0943 0.0690 0.9430 1.0857 0.4719 0.6299 0.3774 0.0480 0.0110 0.6625 0.0427 1.4835 5.0157 0.0472 s.d. 0.0356 0.0160 0.0548 0.0247 0.0320 0.0126 0.0155 0.0346 0.0576 0.0296 0.0198 0.0032 0.0689 0.0258 0.0049 0.0494 0.0651 0.0074 Estimation Results: GPM5 S.D. of Structural Shocks Prior distribution Prior mean Prior s.d. Posterior mode s.d. RES_PIE_AS invg 3.000 Inf 3.6982 0.4221 RES_Y_AS invg 0.500 1.0000 0.2406 0.1084 RES_RS_AS invg 0.600 1.0000 0.2213 0.0347 RES_LGDP_BAR_AS invg 0.200 Inf 18.5265 0.9173 RES_G_AS invg 0.100 Inf 0.0460 0.0381 RES_RR_BAR_AS invg 0.200 Inf 0.1877 0.5291 RES_UNR_GAP_AS invg 0.600 1.0000 0.2488 0.0478 RES_UNR_BAR_AS invg 0.100 Inf 0.0461 0.0493 RES_UNR_G_AS invg 0.100 Inf 0.0472 0.0237 RES_LZ_BAR_AS invg 5.000 Inf 4.8714 0.8198 RES_RR_DIFF_AS invg 1.000 Inf 0.4591 0.3230 Estimation Results: GPM6 Parameters, 1 Prior distribution Prior mean Prior s.d. Posterior mode s.d. alpha1_PH beta 0.750 0.0500 0.7810 0.0434 alpha2_PH gamm 0.100 0.0500 0.0882 0.0503 alpha3_PH beta 0.500 0.2000 0.4673 0.3086 beta_fact_PH gamm 0.150 0.1000 0.1171 0.1024 beta1_PH gamm 0.650 0.1000 0.5710 0.0806 beta2_PH beta 0.150 0.0500 0.1234 0.0446 beta3_PH gamm 0.150 0.0200 0.1310 0.0181 gamma1_PH beta 0.900 0.0500 0.9101 0.0207 gamma2_PH gamm 1.100 0.5000 0.8872 0.3600 gamma4_PH gamm 0.500 0.2000 0.4034 0.1745 growth_PH_ss norm 5.000 0.2000 5.0000 0.2000 lambda1_PH beta 0.500 0.0500 0.5616 0.0477 lambda2_PH gamm 0.400 0.1000 0.3522 0.0876 lambda3_PH gamm 0.050 0.0300 0.0390 0.0292 lambda1_RS_PH beta 0.500 0.1000 0.4469 0.0868 Estimation Results: GPM6 Parameters, 2 phi_PH beta 0.600 0.0500 0.6303 0.0364 pietar_PH_ss gamm 4.714 0.3000 4.6951 0.2994 rho_PH beta 0.500 0.2000 0.2675 0.1123 rr_bar_PH_ss norm 1.500 0.5000 1.5000 0.5000 tau_PH beta 0.050 0.0200 0.0436 0.0188 beta_reergap_PH gamm 0.050 0.0100 0.0480 0.0098 chi_PH beta 0.050 0.0100 0.0481 0.0098 growth_PH_ss norm 5.000 0.2000 5.0401 0.1632 pietar_PH_ss gamm 4.714 0.3000 4.6951 0.2994 rr_bar_PH_ss norm 1.500 0.5000 1.4629 0.4574 beta_reergap_PH gamm 0.050 0.0100 0.0503 0.0097 Estimation Results: GPM6 S.D. of Structural Shocks Prior distribution Prior mean Prior s.d. Posterior mode s.d. RES_PIETAR_PH invg 0.250 Inf 0.1028 0.0338 RES_PIE_PH invg 3.000 Inf 3.2548 0.4240 RES_Y_PH invg 0.500 1.0000 0.4392 0.0933 RES_RS_PH invg 0.600 1.0000 0.2533 0.0486 RES_LGDP_BAR_PH invg 0.200 Inf 0.0900 0.0353 RES_G_PH invg 0.100 Inf 0.0442 0.0168 RES_RR_BAR_PH invg 2.500 Inf 1.8752 0.4157 RES_UNR_GAP_PH invg 1.000 1.0000 0.9615 0.1265 RES_UNR_BAR_PH invg 0.100 Inf 0.0464 0.0192 RES_UNR_G_PH invg 0.100 Inf 0.0477 0.0210 RES_LZ_BAR_PH invg 5.000 Inf 5.7296 1.3704 RES_RR_DIFF_PH invg 1.000 Inf 0.4587 0.1857 RES_DOT_LZ_BAR_PH invg 0.100 Inf 0.0461 0.0188 Impulse Responses: Shock to U.S. Output Gap Impulse Responses: Shock to U.S. Output Gap Impulse Responses: Shock to Euro Area Output Gap Impulse Responses: Shock to Euro Area Output Gap Impulse Responses: Shock to Japan Output Gap Impulse Responses: Shock to Japan Output Gap Impulse Responses: Shock to China Output Gap Impulse Responses: Shock to China Output Gap Impulse Responses: Shock to U.S. Output Gap Impulse Responses: Shock to Euro Area Output Gap Impulse Responses: Shock to U.S. Output Gap Impulse Responses: Shock to Euro Area Output Gap Impulse Responses: Shock to Japan Output Gap Impulse Responses: Shock to China Output Gap Impulse Responses: Shock to ASEAN Output Gap Impulse Responses: Shock to Philippine Output Gap Impulse Responses: Shock to Philippine Output Gap Table of Contents Introduction The Model’s Stochastic Equations Estimation Methods Estimation Results Summary of Findings and Conclusions Findings and Conclusions, 1 Existing PH models (NEDA QMM, PIDS, AMFM, etc.) using equation-by-equation OLS, ECM) Simultaneity bias/inconsistency issue Lucas (1976): coefficients not policy invariant; conclusions & policy advice are invalid and misleading Now standard: modern, dynamic quantitative economics (utilizing Bayesian methods) Dynamic stochastic general equilibrium (DSGE models) Global projection models Findings and Conclusions, 2 This work: cross-region ripple effects to key macro variables (GDP growth, inflation, unemployment, etc.) traced via GPM Greatest influence on ASEAN macroeconomic variables come from ASEAN’s own internal shocks; followed by shocks from U.S., China, Japan, then Euro area, in that order ASEAN own AD shocks’ impact on ASEAN GDP, 0.4 ppt; US AD impact (peaks after 5 or 6 quarters), about 1/7 of ASEAN impact; China AD shock, about 1/9 ASEAN’s; Japan, 1/10; EU, 1/11 Findings and Conclusions, 3 For AMS like PH, domestic shocks also capture much of the influence on own macroeconomic variables. In the case of PH, this is followed by shocks from the U.S., Japan and China, then ASEAN and Euro area. PH AD shock’s impact to PH GDP, about 0.5 percent; US shock’s impact (peaks after about 5 or 6 quarters), about 1/7 of PH shock’s impact; Japan and China, about 1/10; ASEAN and EU, about 1/17. Findings and Conclusions, 4 ■ Impulse responses of PH macro variables Shock to domestic AD results in 0.5% increase on PH real GDP on impact; positive impact persists for more than 2 years Results in decrease in umeployment (lasts for ~ 3 years before returning to steady state) Demand pull increase in inflation Appreciation in currency BSP increase policy rates via Taylor-type reaction function Thank You!