Download Catalyst

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
BIOCATALYTIC PROCESSES FOR
THE PRODUCTION OF FATTY ACID ESTERS
BREW-Symposium
11 May, 2005, Bioperspectives 2005
M. VICENTE, J. ARACIL AND M. MARTINEZ*
CHEMICAL ENGINEERING DEPARTMENT. COMPLUTENSE UNIVERSITY. 28040 MADRID
E-MAIL: [email protected]
GREEN TECHNOLOGY AND SUSTAINABLE DEVELOPMENT
• USING OF RENEWABLE RAW MATERIALS
• SETTING UP NEW INTEGRATED PROCESSES. USE OF
SELECTIVE CATALYSTS. AVOIDANCE OF POLLUTANTS AND BYPRODUCTS
• NEW PRODUCT AND PROCESS DESIGN IN ORDER TO MINIMIZE
WATER AND ENERGY WASTE.
PROCESSES FOR ESTER PRODUCTION
RAW MATERIALS
ESTER PRODUCTION PROCESSES
GENERAL SCHEME
ESTERIFICATION & TRANSESTERIFICATION: CATALYST
1). ESTERS OF MONOALCOHOLS
- Reaction study for different catalyst systems
- Proposed schemes for oleyl oleate production
2). MONOGLYCERIDES
- Reaction study for different catalyst systems
- Proposed schemes for glycerol monooleate and
monoricinolate production
RAW MATERIALS
TRYGLYCERIDES TO OLEOCHEMICALS
O
I
L
S
METHYL FATTY
ESTERS
TRANSESTERIFICATION
wtih Metanol
50ºC and basic catalyst
HYDROGENATION
225ºC and 50atm
FATTY
ALCOHOLS
CRUDE
GLYCERINE
REFINING
CRUDE
FATTY ACIDS
SEPARATION
DISTILLATION
HYDROGENATION
FRACTIONAL DISTILLATION
HYDROLYSIS
230ºC and 32 atm
DISTILLED
FATTY ACIDS
SATURATED
FATTY ACIDS
UNSATURATED
FATTY ACIDS
REFINED
GLYCERINE
FRACTIONATED
FATTY ACIDS
COMPOSITION OF MAIN OILS
FOR OLEIC ACID PRODUCTION
OIL SOURCE
C14
C16
C18
C18:1
C18:2
C18:3
0-1
7-15
1-2
70-85
4-12
-
Pits of olives
-
4-6
2-4
75-85
4-10
-
Peanut
-
12-15
14-16
54-76
12-25
-
Almond
-
5-8
-
75-80
2-4
-
Tea
0-1
7-8
0-1
83-85
22-24
-
Hazelnut
0-1
2-4
1-2
90-95
2-3
-
Soya
0-1
7-10
3-6
25-35
52-60
2-6
Corn
-
7-8
2-4
45-50
40-45
5-10
20-22
1-2
-
60-65
12-15
-
1-2
6-9
1-2
70-75
12-14
-
Cashew nut
-
6-7
11-12
74-75
7-8
-
High oleic sunflower
-
4
3
70-80
15-20
-
High oleic rapeseed
2
-
2
70-80
15-20
2
Olive
Laurel fruit
Laurel cherry
ESTER PRODUCTION
PROCESSES
NON-FOOD
AGRICULTURAL
PRODUCTION
OIL SEEDS
TRANSESTERIFICATION
ALCOHOLS
OILS
BIODIESEL
GLYCERINE
BIODEGRADABLE
PRODUCTS
TRANSESTERIFICATION
MONOGLYCERIDES
ESTERIFICATION
DIGLYCERINE
ESTERIFICATION
POLYGLYCEROL
ESTERS
ESTERIFICATION
FATTY ACIDS
ESTERS OF
MONOALCOHOLS
GENERAL REACTION SCHEMES
A.) ESTERIFICATION PROCESS
R1-COOH
+
FATTY ACID
R2-OH

ALCOHOL
R1-COO-R2
+ H2O
ESTER
B.) TRANSESTERIFICATION PROCESS
CO-O-R1

CO-O-R1’

CO-O-R1’’
OIL
+
CH2-OH

2 CH-OH

CH2-OH
GLYCEROL

CH2-OH

3 CH-OH

CH2-O-OC-R1
MONOGLYCERIDE
WATER
CATALYTIC SYSTEMS
CONVENTIONAL PROCESSES
ACID CATALYST
ESTERIFICATION
PROCESSES
TRANSESTERIFICATION
PROCESSES
BASIC CATALYST
Strong mineral acids
Organic acids
Ion exchange resins
Metal chlorides
Sulphuric acid
Chlorhydric acid
Phosphoric acid
Alkaline hydroxides
Alkaline alkoxides
Carbonates
HETEROGENEOUS
CATALYST
ENZYMATIC
CATALYST
Acid zeolites
Free lipases
Immobilized
lipases
Anionic Exchange
Resins: Oxides
and Mixed Oxides
(CaO-MgO)
Free lipases
Immobilized
lipases
ADVANTAGES OF ENZYMATIC PROCESSES
• SIMPLER PROCESS SCHEMES
• HIGHER SELECTIVITY
• LESS WASTE
• LOWER TEMPERATURE
• LOWER PRESSURE
• LOWER (DIRECT) PROCESS ENERGY REQUIREMENTS
1). ESTERS OF MONOALCOHOLS
OLEYL OLEATE PRODUCTION
CATALYTIC ESTERIFICATION REACTION
CH3-(CH2)7 - CH = CH -(CH2)7- COOH
+
OLEIC ACID
R-CH2 - OH
ALCOHOL
CATALYST
CH3-(CH2)7 - CH = CH - (CH2)7 -COO-CH2-R +
ESTER
H2O
WATER
R = CH3-(CH2 )7 - CH = CH -(CH2 )7- OLEYL ALCOHOL
COMPARISON BETWEEN DIFFERENT CATALYTIC SYSTEMS FOR
ESTERIFICATION REACTION OLEIC ACID + OLEYL ALCOHOL
OLEIC ACID
OLEYL ACOHOL
Batch
Reactor
WATER
VACUUM
PUMP
ESTER
Molar ratio [AC]:[Al] = 1:1
Constant temperature
Constant working pressure
Reaction time: 2h
Catalytic
system
T (ºC)
Catalyst
Ester
P (mmHg)
(wt%)
yield (%)
SnCl2
164
0.45
579
55
Y-Zeolite
180
0.60
160
47
Immobized
Enzyme
70
5
60
95
COMPARISON BETWEEN DIFFERENT ENZYMATIC SYSTEMS FOR
ESTERIFICATION REACTION: OLEIC ACID + OLEYL ALCOHOL
Operation conditions:
- Molar ratio [AC]/[AL] 1:1
- Temperature 70ºC
- Pressure 60 mmHg
(except LIP-10, P=710mmHG)
- Reaction time: 2 h
REACTION
CATALYST
LIP-IM20
Different enzymatic system comparison
100
95,5
94,9
95,6
88,1
90
%wt cat.
XAC
Lipozyme IM20
5
95,5
LIP-IM50
Lipozyme IM50
5
94,9
LIP-IM
Lipozyme IM
5
95,6
LIP-10
Lipozyme
10,000
5
30,5
SP-A
SP-435-A
5
88,1
SP-B
SP-435-B
5
90,7
10
NOVO
Novozyme435
5
92,01
0
SnCl2
SnCl2.5H2O
1
51,7
90,7
92,01
80
70
60
51,7
50
40
30,5
30
20
LIP-IM20 LIP-IM50
LIP-IM
LIP-10
SP-A
SP-B
NOVO
SnCl2
PROPOSED SCHEMES
FOR OLEYL OLEATE PRODUCTION
UCM in collaboration with Dr. Michel Poulina (Uniquema)
OLEYL OLEATE PRODUCTION
RAW MATERIALS
PRODUCT
OLEIC ACID
OLEYL ALCOHOL
OLEYL OLEATE
Technical grade (90%)
Technical grade (90%)
Acid value <1
Hydroxyl value < 30
PROPOSED SCHEMES FOR OLEYL OLEATE PRODUCTION
PRODUCTION
REACTOR
CATALYST
CONVENTIONAL
BATCH
STIRRED TANK
p-toluenesulfonic acid
Tin chloride
Zeolites
BIOPROCESS
BATCH
STIRRED TANK
FIXED-BED
Immobized lipase
Immobized lipase
OLEYL OLEATE PRODUCTION
BATCH_STIRRED TANK
Non-enzymatic esterification: p-toluenesufonic acid
NaOH, solution
CATALYST
p-toluenesulfonic acid
OLEIC ALCOHOL
technical grade
BATCH REACTOR
130ºC, Patm
0.6%wt cat; 16 h
NEUTRALIZATION
DECANTATION
Water
phase
Water
WASHING
DECANTATATION
Water
phase
OLEIC ACID
technical grade
ACIDULATION
H2SO4 /
ACID RECOVERY
CENTRIFUGATION
Soap
BLEACHING
Clays
STEAM
PRODUCTION
DESODORIZATION
Stripping
80ºC, 10 mbar
DRYING
OLEIL OLEATE
OLEYL OLEATE PRODUCTION
BATCH_STIRRED TANK
Enzymatic esterification: immobilized lipases
OLEIC ALCOHOL
technical grade
Condensation
BATCH REACTOR
60ºC, 100mbar
1.5%wt cat; 15h
WATER
FILTRATION
60ºC, Patm
OLEIC ACID
technical grade
STEAM
PRODUCTION
ENZYME
RECYCLE
Clean
Enzyme
DEODORIZATION
Stripping
80ºC, 10 mbar
DRYING
OLEYL OLEATE
OLEYL OLEATE PRODUCTION
BATCH_FIXED BED
Enzymatic esterification: immobilized lipases
WATER
OLEIC ALCOHOL
technical grade
FLASH
SEPARATOR
80ºC, P?
OLEIC ACID
technical grade
TANK
STEAM
PRODUCTION
DEODORIZATION
Stripping
80ºC, 10 MBAR
TANK
DRYING
UNIT 1
OLEYL OLEATE
PROCESS COMPARISON – OLEYL OLEATE
REACTION
CONDITIONS
DOWNSTREAM
PROCESSES
REFINED
PROCESSES
ACID
CATALYST
130ºC
Atmospheric
pressure
0.6 %wt catalyst
1. NEUTRALIZATION
2. WASHING
3. CENTRIFUGATION
1. BEACHING
2. DEODORIZATION
3. DRYING
IMMOBILIZED
LIPASES
STIRRED TANK
60ºC
100 mbar
1.5 %wt catalyst
1. FILTRATION
2. ENZYME RECOVERY
1. DEODORIZATION
2. DRYING
IMMOBIZED
LIPASES
FIXED-BED
60ºC
Atmospheric
pressure
1. FLASH
DISTILLATION
1. DEODORIZATION
2. DRYING
CATALYST
ENERGY ANALYSIS – OLEYL OLEATE
Outcome of energy analysis
(including energy to produce the catalysts used):
 Conventional and enzymatic process designs are roughly comparable.
ECONOMICS – OLEYL OLEATE
800
Other commercially available enzyme:
- novozymes 435: 1500 EUR/kg
Breakeven enzyme cost *)
700
Lipozyme RM IM
600
500
400
300
200
Lipozyme TM IM
100
0
10
Capacity in in kt p.a.
Enzymatic, stirred tank
Lipozyme RM IM
100
Enzymatic, fixed bed
Lipozyme TM IM
*) Breakeven enzyme cost: Enzyme costs below the broken line are economically viable.
O:\WPs\WP3(Envir)\BrewTool\BackgroundTables\Enzymes\Oleyl_oleate_COMPAR_CAT.xls
2). MONOGLYCERIDES
MONOGLYCERIDE OLEATE PRODUCTION
CATALYTIC TRANSESTERIFICACION REACTION SCHEME
CATALYST
TRYGLYCERIDE + 2 GLYCEROL
3 MONOGLYCERIDE
CATALYST
2 TRYGLYCERIDE + GLYCEROL
3 DIGLYCERIDES
COMPARISON BETWEEN DIFFERENT ENZYMATIC SYSTEMS FOR
ESTERIFICATION REACTION: OLIVE OIL + GLYCEROL
Final product composition for different enzymes
100%
90%
CATALYST
t (h)
FFA
MG
DG
34
TG
80%
Olive oil
0
5
1
7
87
Novozyme 435
3
2
23
27
48
Novozyme 435
7
2
33
31
34
Lipozyme IM
3
5
1
8
86
50%
Lipozyme IM
7
5
1
7
87
40%
48
70%
60%
87
86
87
7
1
5
LIP 7h
31
27
30%
33
20%
7
1
5
10%
23
2
2
8
1
5
NOV 3h
NOV 7h
LIP 3h
0%
Oil
Triglycerides
Diglycerides
Monoglycerides
Reference: Martinez, M. Coterón, A. and Aracil, J.
Reactions of Olive Oil and Glycerol over Immobilized Lipases
JAOCS, vol. 75, no.5 (1998)
Fatty acids
PROPOSED SCHEMES
FOR MONOGLYCERIDES
PRODUCTION
UCM in collaboration with Dr. Michel Poulina (Uniquema)
MONOGLYCERIDES PRODUCTION
RAW MATERIALS
PRODUCT
SUNFLOWER OIL
GLYCEROL
RICINOLEIC ACID
High oleic sunflower
Oleic acid > 80%
Glycerine
(Refined grade)
Technical grade
(80%)
HIGH GRADE
PRODUCT
LOW GRADE
PRODUCT
90-96 MG
1-5 DG
< 1 TG
< 1 Glycerol
< 1 Fatty acids
35-60 MG
35-60 DG
1-20 TG
1-20 Glycerol
1-10 Fatty acids
PROPOSED SCHEMES FOR MONOGLYCERIDES PRODUCTION
REACTION
REACTOR
CATALYST
CONVENTIONAL
TRANSESTERIFICATION
STIRRED TANK
KOH
NaOH
BIOPROCESS
TRANSESTERIFICATION
ESTERIFICATION
BASKET REACTOR
STIRRED TANK
Immobilized lipases
Immobilized lipases
GLYCEROL MONOOLEATE PRODUCTION
BATCH_STIRRED TANK
Non-enzymatic transesterification: Basic catalyst
KOH
HOSO
CONDENSATION
MIXER
REACTOR (2 steps)
1. Reaction: 180ºC, Patm
NaOH 0.2wt%
2.Flash distillation: 100mbar
To glycerol feed
GLYCEROL
DECANTATION
50ºC, Patm
GLYCEROL
PURIFICATION
From condensation
NaOH
Water
Residue
WASHING
50ºC, Patm
SHORT PATH
DISTILLATION
200ºC, P <1 mbar
Water
phase
DYGLYCERIDE
MIXER
HQ MONOOLEATE
LQ MONOOLEATE
GLYCEROL MONOOLEATE PRODUCTION
BATCH_BASKET REACTOR
Enzymatic transterification: Immobilized lipases
HOSF
GLYCEROL
MIXER
50ºC, Patm
BASKET
REACTOR
60ºC, Patm
1.5%wt cat, 2 h
CRYSTALLIZATION 1
60ºC-27ºC
0.06ºC/min
CRYSTALLIZATION 2
50ºC-32ºC
0.04ºC/min
TANK
CRYSTALLIZATION 3
45ºC-35ºC
0.02 ºC/min
LQ MONOOLEATE
HQ MONOOLEATE
GLYCEROL MONORICINOLATE PRODUCTION BATCH_STIRRED TANK
Enzymatic esterification: Immobilized lipases
CONDENSATION
RICINOLEIC
ACID
GLYCEROL
MIXER
BATCH REACTOR
60ºC, 100mbar
3wt% cat, 4h
Enzyme
feed
ENZYME
RECOVERY
FILTRATION
40ºC
CENTRIFUGATION
40ºC
GYCEROL
RECOVERY
Resins
STEAM
PRODUCTION
ADSORPTION
40ºC
DEODORIZATION
40ºC
DRYING
GLYCEROL
MONORICINOLATE
PROCESS COMPARISON - MONOGLYCERIDES
REACTION
CONDITIONS
DOWNSTREAM
PROCESSES
REFINED
PROCESSES
TRANSESTERIFICATION
BASIC CATALYSIS
(Glycerol monooleate)
180ºC
Atmospheric
pressure
0.2 %wt catalyst
1. DECANTATION
2. WASHING
1. SHORT PATH
DISTILLATION
TRANSESTERIFICATION
ENZYMATIC CATALYSIS
(Glycerol monooleate)
60ºC
Atmospheric
pressure
1.5 %wt catalyst
CRYSTALLYZATION
(3 STEPS)
1.DEODORIZATION
2.DRYING
ESTERIFICATION
ENZYMATIC CATALYSIS
(Glycerol
monoricinolate)
60ºC
100 mbar
3 %wt catalyst
1.FILTRATION
2.CENTRIFUGATION
3. ADSOPTION
1.DEODORIZATION
2.DRYING
PROCESSES
ENERGY ANALYSIS - MONOGLYCERIDES
Outcome of energy analysis: analogous to oleyl oleate
ECONOMICS – GLYCEROL MONOOLEATE
120
Other commercially available enzymes:
- novozymes 435: 1500 EUR/kg
- Lipozymes RM IM: 600 EUR/kg
- Lipozymes TM IM: 75 EUR/kg
Breakeven enzyme cost *)
100
80
Lipozyme TM IM
60
40
20
0
10
100
Capacity in in kt p.a.
Batch esterification
Batch transesterification
Lipozyme
TM Enzyme
IM
*) Breakeven
enzyme cost:
costs below the broken line are economically viable.
O:\WPs\WP3(Envir)\BrewTool\BackgroundTables\Enzymes\Monoglycerides_COMPAR_CAT.xls
CONCLUSIONS
• KEY PROCESS ADVANTAGES: HIGHER SELECTIVITY, LESS
WASTE; LOWER TEMPERATURE AND LOWER PRESSURE
• SMALL IMPROVEMENT POTENTIALS FOR ENERGY AND GHG
EMISSIONS
• BREAK-EVEN ENZYME COST CAN BE REDUCED BY UP TO
FACTOR 3 BY ECONOMIES OF SCALE
• ALLOWABLE ENZYME COST UP TO FACTOR 5 BY PROCESS
IMPROVEMENT
• ENZYME COSTS FOR SMALL SCALE NEED TO DROP TO AROUND
100 EUR/KG,
FOR LARGE SCALE A FEW TENS OF EUROS/KG
• SYNERGY OF WHITE BIOTECHNOLOGY AND PROCESS
IMPROVEMENTS
 SUBSTANTIAL IMPROVEMENTS ESP. IN IN ECONOMICS
Related documents