Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The AD Catalytic Cycle R R R H2O high e.e. HO R OH Os(VIII) C O O Os O O O O O Os O Os(VIII) O Primary Cycle L* B R [O] L* A Secondary R Cycle R R O R R R R Os(VI) L* R O Os O O L* Os(VI) H2O R R O O Os O O O R low e.e. HO Chem. Rev. 1994, 94, 2483-2547 Sean Parris, Olefin Bisfunctionalisation OH Shutting Down the Secondary Cycle R R R O + L* O Os O O L* Os(VI) R R R + L* HO O OH O Os O O Os(VIII) Organic Phase Aqueous Phase O 2 OH 2 H2O 2 HO Os OH HO OH O Os(VI) O 2 HO Os O HO O O Os(VIII) 2 OH 3 2 Fe(CN)6 Sean Parris, Olefin Bisfunctionalisation 2 H2O 4 2 Fe(CN)6 2 OH The Cinchona Alkaloids (DHQ)2PHAL “AD-a” Sean Parris, Olefin Bisfunctionalisation The AD-Mix Mnemonic Works best for: • trans alkenes • terminal olefins quite bad • with aromatic ring to sit in “attractive area” Sean Parris, Olefin Bisfunctionalisation Which Ligand System? Sean Parris, Olefin Bisfunctionalisation Racemic Dihydroxylation – Beyond Upjohn Upjohn (NMO, OsO4) can be slow & prone to over-oxidation J. Eames, H. Mitchell, A. Nelson, P. O’Brien, S. Warren, P. Wyatt, Perkin 1 1999, p1095 Sean Parris, Olefin Bisfunctionalisation Sharpless Asymmetric Aminohydroxylation (AA) Sean Parris, Olefin Bisfunctionalisation Sharpless Asymmetric Aminohydroxylation (AA) Sharpless et al. Angew. Int. 1997 438 Sean Parris, Olefin Bisfunctionalisation AA –Mechanism Review: McLeod et al, Perkin 1, 2002, 2733 Sean Parris, Olefin Bisfunctionalisation AA – Standard Conditions? Review: P. O’Brien, Angew. Int, 1999, 326 Sean Parris, Olefin Bisfunctionalisation Competing Dihydroxylation • First turnover of catalyse is AD • Can reduce AD with slow addition of substrate Sean Parris, Olefin Bisfunctionalisation AA – Best Substrates Cinnamates best using (DHQ)2PHAL (as drawn) (DHQ)2AQN (regioisomer) a,b-unsat’d (DHQ)2PHAL (as drawn) effect ligand unknown Sean Parris, Olefin Bisfunctionalisation AA – More Substrates -Styrenes, a,b-unsat’d esters & vinyl arenes only work with acetamide & carbamate - Other egs where DHQ vs DHQD give regioisomers in similar ee of opposite stereoinduction! Sean Parris, Olefin Bisfunctionalisation Sharpless Aminohydroxylation – Further Work a,b-unsat’d amides & carboxylic acids found to be good substrates for a racemic AH (Angew. 1997, p2751; Angew. 2001 3455) because exist solely in “secondary cycle” Start to develop a AA using the secondary cycle only which places far more stringent requirements on the ligand, with only partial success: 50-70% ee for AD, 25-60% ee for AA (Angew. 2002, 474) Muniz et al got around the problem of a racemic AH for acrylamindes by using chiral substrate (Tet. Asymm. 2005, 3492) Hergenrother et al found could change regioselectivity in AA of styrenes by controlling pH with modest ee (Org. Let. 2003, 281) Sean Parris, Olefin Bisfunctionalisation Other Aminhydroxylations - TA Tethered Aminohydroxylation (TA) • Stereochemistry comes from allylic alcohol • Stereoinduction requires cyclic system Donohoe et al, JACS 2002, 12934 Sean Parris, Olefin Bisfunctionalisation Tethered Aminohydroxylation Sean Parris, Olefin Bisfunctionalisation Tethered Aminohydroxylation - Mechanism Sean Parris, Olefin Bisfunctionalisation Diamination to Conjugated Dienes (1) disfavour 3 (2) favour Nu addn to give diamine (3) amine souce that won’t react with other species Sean Parris, Olefin Bisfunctionalisation Question Time – Predict the Products O R N H N H 2 Products R Sean Parris, Olefin Bisfunctionalisation Diamination – Initial Results Conditions are modified Wacker conditions - Regioselectivity of first complexation - Unsymmetric ureas (solubility also a problem) - needs chloride Pd pre-catalyst Sean Parris, Olefin Bisfunctionalisation Question Time – Wacker Oxidation O PdCl2, CuCl2 R H2O, O2 Sean Parris, Olefin Bisfunctionalisation R Diamination – Further Results - Benzoquinone (method A) is superior oxidant - best for symmetric dienes Sean Parris, Olefin Bisfunctionalisation Enatioselective Diboronation of Olefins 50-98% 50-96% ee • Works for terminal & di-substiuted alkene, not tri subst • Works best for trans alkenes • Tolerates protected alcohols Morken et al, JACS 2003, 8702; JOC 2005 9538 Sean Parris, Olefin Bisfunctionalisation Enatioselective Diboronation of Olefins Morken et al, JOC 2005 9538 Sean Parris, Olefin Bisfunctionalisation Carbohyroxyltion of Olefins One-pot diboronation-Suzuki cross coupling Morken et al, Org. Lett. 2004, 131 Sean Parris, Olefin Bisfunctionalisation Diboronation Mechanism Sean Parris, Olefin Bisfunctionalisation Regioselective Aminoacetoxylation • Racemic addition • Requires adjacent ether in substrate • Interesting IIII reagent oxidises Pd-C bond… Stahl et al, JACS 2006, 7179 Sean Parris, Olefin Bisfunctionalisation Regioselective Aminoacetoxylation Sean Parris, Olefin Bisfunctionalisation Hydroxysulfenation AcO Sean Parris, Olefin Bisfunctionalisation SR Hydroxysulfenation • R1 = Ar, alk • R1=R2 = c-hex, Ar • R3 = Ar, Cy • Complete diastereoselectivity • can also replace S-Ar with Si-iPr, SePh & SnBu Taniguchi, JACS 2006, 7876 Sean Parris, Olefin Bisfunctionalisation Hydroxysulfenation Sean Parris, Olefin Bisfunctionalisation Hydroxysulfenation Sean Parris, Olefin Bisfunctionalisation