Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CIRCUIT ANALYSIS USING LAPLACE TRANSFORM METHODOLOGY If the circuit is a linear circuit YES Laplace transform of the sources of excitation: s(t) S(s) Laplace transform of the all the elements in the circuit Find the output O(s) in the Laplace freq. domain Obtain the time response O(t) by taking the inverse Laplace transform NO Stop or approximate the circuit into a linear circuit and continue Examples of nonlinear circuits: logic circuits, digital circuits, or any circuits where the output is not linearly proportional to the input. Examples of linear circuits: amplifiers, lots of OPM circuits, circuits made of passive components (RLCs). THE s-DOMAIN CIRCUITS Equation of circuit analysis: integrodifferential equations. Convert to phasor circuits for AC steady state. Convert to s-domain using Laplace transform. KVL, KCL, Thevenin,etc. KIRCHHOFF’S VOLTAGE LAW Consider the KVL in time domain: v1 (t ) v2 (t ) v3 (t ) v4 (t ) 0 Apply the Laplace transform: V1 (s) V2 (s) V3 (s) V4 (s) 0 KIRCHHOFF’S CURRENT LAW Consider the KCL in time domain: i1 (t ) i2 (t ) i3 (t ) i4 (t ) 0 Apply the Laplace transform: I1 (t ) I 2 (t ) I 3 (t ) I 4 (t ) 0 OHM’S LAW Consider the Ohm’s Law in time domain Apply the Laplace transform vR (t ) iR (t ) R VR (s) I R (s) R INDUCTOR Inductor’s voltage – In the time domain: di vL (t ) L dt – In the s-domain: VL (s) L[sI L (s) iL (0 )] INDUCTOR Inductor’s current – Rearrange VL(s) equation: VL ( s) i(0 ) I L ( s) sL s CAPACITOR Capacitor’s current – In the time domain: dv ic (t ) C dt – In the s-domain: I c(s) C[ sVc ( s) vc (0 )] CAPACITOR Capacitor’s voltage – Rearranged IC(s) equation: Vc(s) 1 1 I c(s) vc( 0 ) sC s RLC VOLTAGE The voltage across the RLC elements in the s-domain is the sum of a term proportional to its current I(s) and a term that depends on its initial condition. VL (s) L[sI L (s) iL (0 )] Vc(s) 1 1 I c(s) vc( 0 ) sC s CIRCUIT ANALYSIS FOR ZERO INITIAL CONDITIONS (ICs = 0) IMPEDANCE If we set all initial conditions to zero, the impedance is defined as: V ( s ) Z (s) I (s) [all initial conditions=0] IMPEDANCE & ADMITANCE The impedances in the s-domain are Z R (s) R Z L ( s ) sL 1 Z C ( s) sC The admittance is defined as: 1 YR ( s ) R 1 YL ( s ) sL YC ( s ) sC Ex. Find vc(t), t>0 vc (t ) 0.5 F v L (t ) 1H v R (t ) 3 u (t ) Obtain s-Domain Circuit All ICs are zero since there is no source for t<0 Vc (s) 2 VL (s ) s s VR (s ) I (s) 3 1 s Convert to voltage sourced s-Domain Circuit Vc (s) 2 VL (s ) s s I (s) VR (s) 3 3 s Find I(s) 2 3 By KVL : s 3 I ( s ) 0 s s 3 I ( s) 2 s 3s 2 Find Capacitor’s Voltage The capacitor’s voltage: 2 6 Vc ( s) I ( s) 2 s s( s 3s 2) Rewritten: 6 6 Vc ( s) 2 s( s 3s 2) s( s 1)( s 2) Using PFE Expanding Vc(s) using PFE: K3 6 K1 K 2 Vc ( s) s( s 1)( s 2) s s 1 s 2 Solved for K1, K2, and K3: 6 3 6 3 Vc ( s) s( s 1)( s 2) s s 1 s 2 Find v(t) 6 3 6 3 Vc ( s) s( s 1)( s 2) s s 1 s 2 Using look up table: vc (t ) 3 6e t 3e 2 t u (t ) Ex. Find the Thevenin and Norton equivalent circuit at the terminal of the inductor. 0.5 F 1H 3 u(t) Obtain s-domain circuit 2/s s 3 1/s Find ZTH 2/s 3 Z TH 2 3 s Find VTH or Voc + VTH 2/s 3 - VTH 1 3 3 s s 1/s Draw The Thevenin Circuit Using ZTH and VTH: 2/s 3 + - 3/s Obtain The Norton Circuit The norton current is: 3 VTH 3 s IN ZTH 3 2 3s 2 s 2/s 3/(3s+2) 3 Ex. Find v0(t) for t>0. s-Domain Circuit Elements Laplace transform all circuit’s elements u (t ) 1 s 1H sL s 1 3 F 1 sC 3 s s-Domain Circuit Apply Mesh-Current Analysis Loop 1 Loop 2 1 3 3 1 I1 I 2 s 5 s 3 3 0 I1 s 5 I 2 s s 1 2 I1 s 5 s 3 I 2 3 Substitute I1 into eqn loop 1 1 31 2 3 1 s 5 s 3 I 2 I 2 s 53 s 3 s 8s 18s I 2 3 2 3 I2 3 2 s 8s 18s Find V0(s) V0 ( s ) sI 2 3 2 s 8s 18 3 2 2 2 2 ( s 4) ( 2 ) Obtain v0(t) 3 2 Vo ( s ) 2 2 2 ( s 4) ( 2 ) 3 4t v0 (t ) e sin 2t 2 CIRCUIT ANALYSIS FOR NON ZERO INITIAL CONDITION (ICs ≠ 0) TIME DOMAIN TO s-DOMAIN CIRCUITS s replaced t in the unknown currents and voltages. Independent source functions are replaced by their s-domain transform pair. The initial condition serves as a second element, the initial condition generator. THE ELEMENTS LAW OF sDOMAIN VR ( s) RI R ( s) VL ( s) sLI L ( s) LiL (0 ) 1 1 VC ( s) I C ( s) vC (0 ) sC sC THE ELEMENTS LAW OF sDOMAIN V ( s ) R I R ( s) V ( s ) L I L (s) R i ( 0 ) L sL s I C ( s ) sCV ( s ) CvC (0 ) TRANSFORM OF CIRCUITSRESISTOR In the time domain: i(t) + v(t)R v(t)=i(t)R In the s-domain: I(s) + V(s)R V(s)=I(s)R TRANSFORM OF CIRCUITSINDUCTOR In the time domain: TRANSFORM OF CIRCUITSINDUCTOR Inductor’s voltage: Inductor’s current: TRANSFORM OF CIRCUITSCAPACITOR In the time domain: TRANSFORM OF CIRCUITSINDUCTOR Capacitor’s voltage: Capacitor’s current: Ex. Find v0(t) if the initial voltage is given as v0(0-)=5 V s-Domain Circuit Apply nodal analysis method V0 10 ( s 1) Vo Vo 2 0.5 10 10 10 s V0 Vo sVo 1 2.5 10 s 1 10 10 1 1 Vo ( s 2) 2.5 10 s 1 Cont’d 10 Vo ( s 2) 25 s 1 25s 35 V0 ( s 1)( s 2) Using PFE Rewrite V0(s) using PFE: 25s 35 K1 K2 Vo ( s 1)( s 2) s 1 s 2 Solved for K1 and K2: K1 10; K2 15 Obtain V0(s) and v0(t) Calculate V0(s): 10 15 Vo ( s ) s 1 s 2 Obtain V0(t) using look up table: t 2 t vo (t ) (10e 15e )u (t ) Ex. The input, is(t) for the circuit below is shown as in Fig.(b). Find i0(t) is(t) io (t ) is (t ) 1H (a) 1 1 2 0 (b) t(s) s-Domain Circuit I o (s) I s (s) s 1 Using current divider: s I o (s) I ( s) (1) s 1 Derive Input signal, Is is1(t) is(t) t 1 0 is2(t) 0 2 t(sec) t 0 2 Obtain Is(t) and Is(s) Expression for is(t): is (t ) u(t ) u(t 2) Laplace transform of is(t): 1 2 s 1 1 2 s I s ( s) e 1 e s s s (2) Substitute eqn. (2) into (1): 2 s s (1 e ) I 0 (s) s ( s 1) 2 s 1 e s 1 s 1 Inverse Laplace transform t io (t ) e u(t ) e (t 2) u(t 2)