Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
TWO PORT NETWORKS 1 SUB - TOPICS Z – PARAMETER Y – PARAMETER T (ABCD) – PARAMETER TERMINATED TWO PORT NETWORKS 2 OBJECTIVES • TO UNDERSTAND ABOUT TWO – PORT NETWORKS AND ITS FUNTIONS. • TO UNDERSTAND THE DIFFERENT BETWEEN Z – PARAMETER, Y – PARAMETER, T – PARAMETER AND TERMINATED TWO PORT NETWORKS. • TO INVERTIGATE AND ANALYSIS THE BEHAVIOUR OF TWO – PORT NETWORKS. 3 TWO – PORT NETWORKS • A pair of terminals through which a current may enter or leave a network is known as a port. • Two terminal devices or elements (such as resistors, capacitors, and inductors) results in one – port network. • Most of the circuits we have dealt with so far are two – terminal or one – port circuits. 4 • A two – port network is an electrical network with two separate ports for input and output. • It has two terminal pairs acting as access points. The current entering one terminal of a pair leaves the other terminal in the pair. 5 I + V - Linear network I One – port network I1 + V1 - I2 + V2 - Linear network I1 I2 Two – port network 6 • Two (2) reason why to study two port – network: Such networks are useful in communication, control system, power systems and electronics. Knowing the parameters of a two – port network enables us to treat it as a “black box” when embedded within a larger network. 7 • From the network, we can observe that there are 4 variables that is I1, I2, V1and V2, which two are independent. • The various term that relate these voltages and currents are called parameters. 8 Z – PARAMETER • Z – parameter also called as impedance parameter and the units is ohm (Ω) • Impedance parameters is commonly used in the synthesis of filters and also useful in the design and analysis of impedance matching networks and power distribution networks. • The two – port network may be voltage – driven or current – driven. 9 • Two – port network driven by voltage source. I1 V1 + I2 + Linear network V2 • Two – port network driven by current sources. I1 + V1 - Linear network + V2 I2 - 10 • The “black box” is replace with Z-parameter is as shown below. I2 I1 + V1 - Z11 Z12 Z21 Z22 + V2 - • The terminal voltage can be related to the terminal current as: V1 z11I1 z12 I 2 (1) V2 z 21I1 z 22 I 2 (2) 11 • In matrix form as: V1 z11 V z 2 21 z12 I1 z22 I 2 • The Z-parameter that we want to determine are z11, z12, z21, z22. • The value of the parameters can be evaluated by setting: 1. I1= 0 (input port open – circuited) 2. I2= 0 (output port open – circuited) 12 • Thus, V1 z11 I1 V2 z 21 I1 I 2 0 V1 z12 I2 I1 0 I 2 0 V2 z 22 I2 I1 0 13 • Where; z11 = open – circuit input impedance. z12 = open – circuit transfer impedance from port 1 to port 2. z21 = open – circuit transfer impedance from port 2 to port 1. z22 = open – circuit output impedance. 14 Example 1 Find the Z – parameter of the circuit below. I2 I1 + V1 + 240Ω 120Ω _ V2 _ 40Ω 15 Solution i) I2 = 0(open circuit port 2). Redraw the circuit. Ia I1 + V1 240Ω Ib 120Ω _ + V2 _ 40Ω 16 V1 120 I b .......(1) V2 240 I a .......(3) 280 120 Ib I1......(2) I a I1.......(4) 400 400 sub (1) (2) sub (4) (3) V1 V2 Z11 84 Z 21 72 I1 I1 17 ii) I1 = 0 (open circuit port 1). Redraw the circuit. Iy I2 + V1 + 120Ω 240Ω _ Ix V2 _ 40Ω 18 V2 240 I x .......(1) V1 120 I y .......(3) 160 Ix I 2 .......( 2) 400 sub (1) (2) V2 Z 22 96 I2 240 Iy I 2 .......(4) 400 sub (4) (3) V1 Z12 72 I2 In matrix form: 84 72 Z 72 96 19 Example 2 Find the Z – parameter of the circuit below I1 + V1 _ 2Ω 10Ω j4Ω + _ I2 + 10I2 -j20Ω V2 _ 20 Solution i) I2 = 0 (open circuit port 2). Redraw the circuit. V1 I1 (2 j4) I1 2Ω j4Ω I2 = 0 + + V1 _ V2 _ V1 Z11 (2 j4) I1 V2 0 (short circuit) Z 21 0 21 ii) I1 = 0 (open circuit port 1). Redraw the circuit. I1 = 0 10Ω + V1 _ + _ I2 V1 10I 2 + 10I2 -j20Ω V2 _ In matrix form; 0 (2 j4) Z 10 (16 j8) V1 Z12 10 I2 V2 V2 - 10I 2 I2 j20 10 1 j 2I 2 V2 20 10 V2 Z 22 (16 - j8) I2 22 Y - PARAMETER • Y – parameter also called admittance parameter and the units is siemens (S). • The “black box” that we want to replace with the Y-parameter is shown below. I2 I1 + V1 - Y11 Y12 Y21 Y22 + V2 - 23 • The terminal current can be expressed in term of terminal voltage as: I1 y11V1 y12V2 (1) I 2 y21V1 y22V2 (2) • In matrix form: I1 y11 I y 2 21 y12 V1 y22 V2 24 • The y-parameter that we want to determine are Y11, Y12, Y21, Y22. The values of the parameters can be evaluate by setting: i) V1 = 0 (input port short – circuited). ii) V2 = 0 (output port short – circuited). • Thus; I1 Y11 V1 Y21 I2 V1 V2 0 I1 V2 V1 0 V2 0 I2 V2 V1 0 Y12 Y22 25 Example 1 Find the Y – parameter of the circuit shown below. I1 5Ω I2 + V1 _ + 20Ω 15Ω V2 _ 26 Solution i) V2 = 0 5Ω I1 + V1 _ Ia 20Ω I2 V1 20 I a .......(1) 5 Ia I1.......(2) 25 sub (1) (2) I1 1 Y11 S V1 4 V1 5 I 2 I2 1 Y21 S V1 5 27 ii) V1 = 0 I1 V2 15 I x .......(3) 5Ω I2 + 15Ω Ix V2 _ In matrix form; 1 4 Y 1 5 1 5 S 4 15 5 Ix I 2 .......( 4) 25 sub (3) (4) I2 4 Y22 S V2 15 V2 5I1 I1 1 Y12 S V2 5 28 Example 2 (circuit with dependent source) Find the Y – parameters of the circuit shown. I1 + V1 _ 2Ω 10Ω j4Ω + _ I2 + 10I2 -j20Ω V2 _ 29 Solution i) V2 = 0 (short – circuit port 2). Redraw the circuit. I1 2Ω + 10Ω j4Ω + V1 _ _ I2 10I2 I0 V1 (2 j4)I1 I1 1 Y11 (0.1 - j0.2) S V1 2 j4 I2 Y21 0S V1 30 ii) V1 = 0 (short – circuit port 1). Redraw the circuit. I1 2Ω 10Ω j4Ω + _ - 10I 2 ........(1) 2 j4 V2 V2 - 10I 2 I2 - j20 10 I1 1 1 .......(2) 2I 2 V2 10 - j20 I2 + 10I2 -j20Ω V2 _ I2 Y22 (0.05 j0.025) S V2 sub (2) (1) I Y12 1 (-0.1 j0.075) S V2 In matrix form; 0.1 j0.2 0.1 j0.075 Y S 0 0.05 j0.025 31 T (ABCD) PARAMETER • T – parameter or ABCD – parameter is a another set of parameters relates the variables at the input port to those at the output port. • T – parameter also called transmission parameters because this parameter are useful in the analysis of transmission lines because they express sending – end variables (V1 and I1) in terms of the receiving – end variables (V2 and -I2). 32 • The “black box” that we want to replace with T – parameter is as shown below. I2 I1 + V1 - A11 B12 C21 D22 + V2 - • The equation is: V1 AV2 BI 2 .......(1) I1 CV2 DI 2 .......(2) 33 • In matrix form is: V1 A B V2 I C D I 2 1 • The T – parameter that we want determine are A, B, C and D where A and D are dimensionless, B is in ohm (Ω) and C is in siemens (S). • The values can be evaluated by setting i) I2 = 0 (input port open – circuit) ii) V2 = 0 (output port short circuit) 34 • Thus; V1 A V2 I1 C V2 I 2 0 V1 B I2 V2 0 I 2 0 I1 D I2 V2 0 • In term of the transmission parameter, a network is reciprocal if; AD - BC 1 35 Example Find the ABCD – parameter of the circuit shown below. I1 2Ω 4Ω + V1 _ I2 + 10Ω V2 _ 36 Solution i) I2 = 0, I1 V2 10 I1 2Ω + V1 _ + 10Ω V2 _ I1 C 0.1S V2 V1 2 I1 V2 6 V2 V1 2 V2 V2 5 10 V1 A 1.2 V2 37 ii) V2 = 0, I1 2Ω 4Ω + V1 10Ω I1 + I2 _ I2 10 I2 I1 14 I1 D 1.4 I2 V1 2 I1 10I1 I 2 V1 12 I1 10 I 2 1.2 6.8 T 0.1 1.4 14 V1 12 I 2 10 I 2 10 V1 B 6.8 I2 38 TERMINATED TWO – PORT NETWORKS • In typical application of two port network, the circuit is driven at port 1 and loaded at port 2. • Figure below shows the typical terminated 2 port model. Zg Vg + I1 + V1 - I2 Two – port network + V2 - ZL 39 • Zg represents the internal impedance of the source and Vg is the internal voltage of the source and ZL is the load impedance. • There are a few characteristics of the terminated two-port network and some of them are; V1 i) input impedance, Zi ii) output impedance, Z o iii) current gain, A i I2 I1 iv) voltage gain, A v V2 V1 v) I1 V2 I2 overall voltage gain, A g V2 Vg 40 • The derivation of any one of the desired expression involves the algebraic manipulation of the two – port equation. The equation are: 1) the two-port parameter equation either Z or Y or ABCD. For example, Z-parameter, V1 Z11I1 Z12I 2 .......(1) V2 Z21I1 Z22I 2 .......(2) 41 2) KVL at input, V1 Vg I1Zg .......(3) 3) KVL at the output, V2 I2 ZL .......(4) • From these equations, all the characteristic can be obtained. 42 Example 1 For the two-port shown below, obtain the suitable value of Rs such that maximum power is available at the input terminal. The Z-parameter of the two-port network is given as Z11 Z12 6 2 Z Z 4 4 22 21 V2 With Rs = 5Ω,what would be the value of Vs Rs Vs + I1 + V1 - I2 Z + V2 - 4Ω 43 Solution 1) Z-parameter equation becomes; V1 6 I1 2 I 2 .......(1) V2 4 I1 4 I 2 .......(2) 2) KVL at the output; V2 4I 2 .......(3) Subs. (3) into (2) I1 I 2 .......( 4) 2 44 Subs. (4) into (1) V1 5I1.......(5) V1 Z1 5 I1 For the circuit to have maximum power, Rs Z1 5 45 V2 Vs To find at max. power transfer, voltage drop at Z1 is half of Vs Vs V1 .......(6) 2 From equations (3), (4), (5) & (6) Overall voltage gain, V2 1 Ag Vs 5 46 Example 2 The ABCD parameter of two – port network shown below are. 20 4 0.1S 2 The output port is connected to a variable load for a maximum power transfer. Find RL and the maximum power transferred. 47 Solution ABCD parameter equation becomes (1) V1 = 4V2 – 20I2 (2) I1 = 0.1V2 – 2I2 At the input port, V1 = -10I (3) 48 (3) Into (1) -10I1 = 4V2 – 20I2 I1 = -0.4V2 2I2 (4) (2) = (4) 0.1V2 – 2I2 = -0.4V2 + 2I2 0.5V2 = 4I2 (5) From (5); ZTH = V2/I2 = 8Ω (6) 49 But from Figure (b), we know that V1 = 50 – 10I1 and I2 =0 Sub. these into (1) and (2) 50 – 10I1 = 4V2 (7) I1 = 0.1V2 (8) 50 Sub (8) into (7) V2 = 10 Thus, VTH = V2 = 10V RL for maximum power transfer, RL = ZTH = 8Ω The maximum power P = I2RL = (VTH/2RL)2 x RL = V2TH/4RL = 3.125W 51