Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
RBF AND SVM NEURAL NETWORKS FOR POWER QUALITY DISTURBANCES ANALYSIS Przemysław Janik, Tadeusz Łobos Wroclaw University of Technology Peter Schegner Dresden University of Technology Contents Increased Interest in Power Quality RBF and SVM Neural Networks Space Phasor Basic Disturbances Simulation of Voltage Sags Conclusion 2 Interest in Power Quality Deregulation of the electric energy market Growing need for standardization Equipment has become more sensitive Equipment causes voltage disturbances Power quality can be measured 3 Interconnections internal disturbances in power grid electrical power grid disturbance source disturbance sink 4 Space division by classical BP algorithm and RBF network Back Propagation Algorithm RBF Neural Network 5 Radial Basis Function rbf xx cnt x xcnt exp 2c2 2 x xi , x j rbf xj xi 6 Radial Basis Function RBF Neural Network Formulation of the Classification Problem W r x 0 dla x X W r x 0 dla x X T T X+, X- classes x input vector radial function 7 SVM Neural Networks Support Vector Machines Formulation of the Classification Problem xi , di w xi b0 1 di 1 T 0 w xi b0 1 di 1 T 0 8 Learning of SVM networks Hyperplane Equation g x w x b 0 T Finding the Minimum 1 T min w w w 2 d i w xi b 1 T 9 Dividing hyperplane and separation margin g x wT x b 0 Support Vectors Separation Margin 10 SVM characteristics linearly not separable data sets can be transformed into high dimensional space to be separable (Cover’s Theorem) Avoiding of local minima (quadratic programming) Learning complexity doesn't depend on data set dimension (support vectors) SVM network structure complexity depends on separation margin (to be chosen) 11 Space Phasor (SP) f1 f 2 2 3 1 0 f 1 2 3 1 2 2 f a f b 3 fc 2 f1 jf 2 2 12 Basic Disturbances Outages (Duration and Frequency) Sags Swells Harmonics Flicker (Voltage Fluctuation) Oscillatory transients Frequency variation Symmetry 13 Parametric equations of basic disturbances Event Pure Sinusoid Sudden Sag Sudden Swell Equation v t sin(t ) v t A 1 u t1 u t2 sin t v t A 1 u t1 u t2 sin t Harmonics v t A 1 sin t 3 sin 3t 5 sin 5t 7 sin 7t Flicker v t A 1 sin t sin t Oscillatory Transient v t A sin t expt t1 / sin n t t1 14 Parameters variation Event Parameters variation Pure Sinusoid All parameters constant Sudden Sag duration 0-9 T, amplitude 0.3-0.8 pu Sudden Swell duration 0-8 T, amplitude 0.3-0.7 pu Harmonics order 3,5,7, amplitude 0-0.9 pu Flicker frequency 0.1-0.2 pu, amplitude 0.1-0.2 pu Oscillatory Transient time const. 0.008-0.04 s, period 0.5-0.125 pu Signals number In each class: 50 Totally: 300 15 Voltage sags 1.5 1 1 imaginary part U [p.u.] 0.5 0 0.5 0 -0.5 -0.5 -1 -1 0 0.02 0.04 0.06 time [s] Sags deepness Sags duration 0.08 0.4 0.032 s 0.1 -1.5 -1.5 -1 -0.5 0 real part 0.5 1 1.5 16 Oscillations 2 1.5 1.5 1 imaginary part 1 U [p.u.] 0.5 0 0.5 0 -0.5 -0.5 -1 -1 -1.5 0.02 0.04 0.06 time [s] Time constant Oscillations period 0.08 0.1 0.0176 s 0.0053 s -1.5 -2 -1 0 real part 1 2 17 Flicker 1.5 1 1 Imaginary part 1.5 U [p.u] 0.5 0 0.5 0 -0.5 -0.5 -1 -1 -1.5 0 0.05 0.1 time [s] 0.15 -1.5 -1.5 -1 -0.5 0 real part 0.5 1 1.5 Flicker amplitude 0.12 Frequency 8 Hz 18 TEST SIGNALS (40) Classification results of SVM CLASSES FLICK HAR SIN SWELL OSCILL SAG SIN 1.0 0.0 0.0 0.0 0.0 0.0 SWELL 0.025 0.975 0.0 0.0 0.0 0.0 FLICK 0.0 0.0 1.0 0.0 0.0 0.0 HAR 0.025 0.0 0.0 0.975 0.0 0.0 OSCILL 0.0 0.0 0.0 0.0 1.0 0.0 SAG 0.025 0.0 0.0 0.0 0.0 0.975 19 Classification results of RBF TEST SIGNALS (40) SIN SWELL CLASSES FLICK HAR 0.0 0.975 0.0 0.0 0.725 OSCILL SAG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SIN 1.0 SWELL 0.275 FLICK 0.0 0.0 1.0 0.0 0.0 HAR 0.025 0.0 0.0 0.975 0.0 OSCILL 0.350 0.0 0.0 0.0 0.650 SAG 0.275 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.975 0.725 Classification results of SVM 20 Sags originating in faults SYS: Sk'' 3 GVA, U N 110 kV 2800 different signals faults ABC AB BC CA T1: n 110/16,5 d/y L1: l 0,5...2,5 km, l 0,5 km ts: t z 0,051...0,61 s, ts 0,04 s L1 Short circuit ODB 1 S3 SYS S1 T1 S2 L2 ODB 2 S4 21 Voltage sags 4 4 1.5 x 10 1.5 1 imaginary part 1 0.5 U [V] 0 0.5 0 -0.5 -0.5 -1 -1 -1.5 0 x 10 0.02 0.04 0.06 time [s] 0.08 0.1 -1.5 -1.5 -1 -0.5 0 real part 0.5 1 1.5 4 x 10 22 Conclusion and future prospects Automated PQ assessment needed SVM based classifier appropriate for automated PQ disturbances recognition Network models for wide parameter changes Research work do be done with real signal 23