Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Digital Integrated Circuits The Inverter Inverter Voltage Transfer Characteristic Inverter The CMOS Inverter: A First Glance V DD V in V out CL Inverter PMOS Load Lines V in =V DD + VGSp I Dn = - I Dp Vout = V + VDSp DD I I Dn I Dp Dn V V =0 in V V =1.5 in V V V GSp GSp V DSp =-1 =-2.5 V =V +V in DD GSp I =-I Dn Dp in in =0 =1.5 V DSp V out =V DD +V DSp Inverter out CMOS Inverter Load Characteristics ID n PMOS Vin = 0 Vin = 2.5 Vin = 0.5 Vin = 2 Vin = 1 Vin = 1.5 Vin = 1.5 Vin = 1 Vin = 1.5 Vin = 2 Vin = 2.5 NMOS Vin = 1 Vin = 0.5 Vin = 0 Vout Inverter CMOS Inverter VTC NMOS off PMOS res 2.5 Vout 2 NMOS s at PMOS res 1 1.5 NMOS sat PMOS sat 0.5 NMOS res PMOS sat 0.5 1 1.5 2 NMOS res PMOS off 2.5 Vin Inverter Switching Threshold as a function of Transistor Ratio 1.8 1.7 1.6 1.5 M V (V) 1.4 Idn(VM)=Idp(VM) 1.3 1.2 1.1 1 0.9 0.8 10 0 10 W /W p 1 n Inverter Switching Threshold as a function of Transistor Ratio 1.8 1.7 1.6 1.5 M V (V) 1.4 1.3 1.2 1.1 1 0.9 0.8 10 0 10 W /W p n 1 Inverter Determining VIH and VIL A simplified approach Vout V OH VM V in V OL V IL V IH Inverter Simulated VTC 2.5 2 Vout(V) 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 V (V) in Inverter Inverter Gain 0 -2 -4 gain -6 -8 -10 -12 -14 -16 -18 0 0.5 1 1.5 2 2.5 V (V) in Inverter Gain as a function of VDD 2.5 0.2 2 0.15 Vout(V) Vout (V) 1.5 0.1 1 0.05 0.5 Gain=-1 0 0 0.5 1.5 1 V (V) in 2 2.5 0 0 0.05 0.1 V (V) 0.15 0.2 in Inverter Impact of Process Variations 2.5 2 Wider PMOS Good PMOS Bad NMOS Nominal Vout(V) 1.5 1 Wider NMOS Good NMOS Bad PMOS 0.5 0 0 0.5 1 1.5 2 2.5 Vin (V) Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter t/τ Inverter Inverter The Book’s Method Page 76 Inverter Inverter Inverter 导线电容 Inverter Inverter Lumping the Caps Inverter Inverter Inverter Inverter 再生性 Inverter Propagation Delay Inverter Transient Response 3 2.5 Vout(V) 电平 ? 2 tp = 0.69 CL (Reqn+Reqp)/2 1.5 1 S->D的电容有跳变 tpHL tpLH 0.5 0 -0.5 0 0.5 1 1.5 t (sec) 2 2.5 -10 x 10 Inverter Inverter Inverter 时延增加 Inverter Inverter Inverter Power Dissipation Inverter Where Does Power Go in CMOS? Inverter Dynamic Power Dissipation Inverter Dynamic Power Dissipation Inverter Inverter Short Circuit Currents Inverter Diode Leakage GATE p+ p+ N Reverse Leakage Current + V - dd IDL = JS A JS = 10-100 pA/m2 at 25 deg C for 0.25m CMOS JS = 1-5pA/m2 for a 1.2m CMOS technology JS doubles for everyo 9 deg C! Js double with every 9 C increase in temperature Much smaller than transistor leakage Inverter Inverter Inverter Inverter Inverter Inverter Inverter Principles for Power Reduction Prime choice: Reduce voltage! Recent years have seen an acceleration in supply voltage reduction Design at very low voltages still open question (0.6 … 0.9 V by 2010!) Reduce switching activity Reduce physical capacitance Device Sizing: for F=20 – fopt(energy)=3.53, fopt(performance)=4.47 Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter