Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Network Parameters Impedance and Admittance matrices For n ports network we can relate the voltages and currents by impedance and admittance matrices Impedance matrix V1   Z11 V   Z12  2   .  .  .  .    Vn   Z1n Admittance matrix Z 21 . . Z n1   I1  Z 22 . . Z n 2   I 2  . . . .  .    . . . .  .  Z 2n . . Z nn   I n  where  I1  Y11 Y21  I  Y12 Y22  2  .  .  .  .  . .     I n  Y1n Y2n Y   Z 1 . . Yn1  V1  . . Yn 2  V2  . . .  .    . . .  .  . . Ynn  Vn  Reciprocal and Lossless Networks Reciprocal networks usually contain nonreciprocal media such as ferrites or plasma, or active devices. We can show that the impedance and admittance matrices are symmetrical, so that. Zij  Z ji or Yij  Yji Lossless networks can be shown that Zij or Yij are imaginary Refer to text book Pozar pg193-195 Example Find the Z parameters of the two-port T –network as shown below ZA ZB I1 I2 V1 V2 ZC Solution Port 2 open-circuited Z11  V1 I1  Z A  ZC Z12 I1 0 Z 21  I 2 0 Port 1 open-circuited V1  I2 Similarly we can show that V2 I1  ZC I 2 0 This is an example of reciprocal network!! ZC V2 ZC   Z B  ZC   ZC I 2 Z B  ZC Z B  ZC Z 22  V2 I2  Z B  ZC I1 0 S-parameters Port 1 Port 2 Microwave device Input signal reflected signal transmitted signal Vi1 Vr1 Vt2 Transmission and reflection coefficients   Vt Vi   Vr Vi Vi2 Vr2 Vt1 S-parameters Voltage of traveling wave away from port 1 is Vb1  V Vr1 Vi1  t 2 Vi 2 Vi1 Vi 2 Voltage of Reflected wave From port 1 Voltage of Transmitted wave From port 2 Voltage of transmitted wave away from port 2 is Vb 2 Vt1 Vr 2  Vi1  Vi 2 Vi1 Vi 2 Vt1 Vt 2  Vr1 , 12  , 21  V Let Vb1= b1 , Vi1=a1 , Vi2=a2 ,  1 i1 Vi1 Vi 2 Vr 2 and  2  Then we can rewrite Vi 2 S-parameters b1  1 a1  12a2 Hence In matrix form S-matrix b2   21 a1   2a2  b1   1 12   a1  b     a   2  2   2   21  b1   S11 S12   a1  b   S  a  S 22   2   2   21 •S11and S22 are a measure of reflected signal at port 1 and port 2 respectively •S21 is a measure of gain or loss of a signal from port 1 to port 2. •S12 ia a measure of gain or loss of a signal from port 2 to port 1. Logarithmic form S11=20 log(1) S22=20 log(2) S12=20 log(12) S21=20 log(21) S-parameters S11  S12  Vr1 Vi1 Vt 2 Vi 2 Vr 2 0 Vr 2 0 Vr2=0 means port 2 is matched S 21  Vt1 Vi1 S 22  Vr1 0 Vr1=0 means port 1 is matched Vr 2 Vi 2 Vr1 0 Multi-port network Port 5 Port 1 Port 4 network  b1   S11 S12 b   S S 22  2   21 b3    S31 S32 b   S S 42  4   41 b5   S51 S52 S13 S14 S 23 S 24 S33 S34 S 43 S53 S 44 S54 S15   a1  S 25  a2  S35   a3    S 45  a4  S55   a5  Example Below is a matched 3 dB attenuator. Find the S-parameter of the circuit. 8.56  8.56  141.8  Z1=Z2= 8.56  and Z3= 141.8  Solution Vr1 S11  Vi1 V r 2 0 Zin  Z o  Zin  Z o By assuming the output port is terminated by Zo = 50 , then Z  Z  Z //( Z  Z ) in 1 3 2 o  8.56  141.8(8.56  50) /(141.8  8.56  50)  50  S11  50  50 0 50  50 Because of symmetry , then S22=0 Continue 8.56  S21  Vt 2 Vi 2 V r 2 0 V1 Vo 8.56  141.8  V2 From the fact that S11=S22=0 , we know that Vr1=0 when port 2 is matched, and that Vi2=0. Therefore Vi1= V1 and Vt2=V2  Z 2 // Z 3  Z o   Zo     Vo   Vt 2  V2  V1  Z 2 // Z 3  Z1  Z 3  Z o   Z3  Z o   41.44  50   V1    0.707V1  41.44  8.56  50  8.56  Therefore S12 = S21 = 0.707 S    0 0.707 0  0.707 Lossless network For lossless n-network , total input power = total output power. Thus n  i 1 ai ai* n   bibi* Where a and b are the amplitude of the signal i 1 at a* = bt b* =at St S* a* Putting in matrix form Thus at (I – St S* )a* =0 In summation form n  k 1 * SkiSkj  1 0 for i  j   for i  j  This implies that Note that bt=atSt and b*=S*a* St S* =I Called unitary matrix Conversion of Z to S and S to Z S   Z  U 1Z  U  Z   U  S 1U  S  where 1 0 . 0 0 . . .   U    . . 1 .   0 . . 1  Reciprocal and symmetrical network Since the [U] is diagonal , thus U   U  t For reciprocal network Z   Z t Thus it can be shown that S   S  t Since [Z] is symmetry Example A certain two-port network is measured and the following scattering matrix is obtained:  0.10o 0.890o  S    o o  0 . 8  90 0 . 2  0   From the data , determine whether the network is reciprocal or lossless. If a short circuit is placed on port 2, what will be the resulting return loss at port 1? Solution Since [S] is symmetry, the network is reciprocal. To be lossless, the S parameters must satisfy For i=j n 1 for i  j  2 + |S |2 = (0.1)2 + (0.8)2 = 0.65 * |S | 11 12  SkiSkj  0 for i  j   k 1 Since the summation is not equal to 1, thus it is not a lossless network. continue Reflected power at port 1 when port 2 is shorted can be calculated as follow and the fact that a2= -b2 for port 2 being short circuited, thus b1=S11a1 + S12a2 = S11a1 - S12b2 (1) b2=S21a1 + S22a2 = S21a1 - S22b2 (2) From (2) we have S 21 b2  a1 1  S 22 Short at port 2 (3) Dividing (1) by a1 and substitute the result in (3) ,we have  b1 b2 S12 S 21 j 0.8 j 0.8    S11  S12  S11   0.1   0.633 a1 a1 1  S 22 1  0.2 Return loss  20 log   20 log 0.633  3.97 dB a2 -a2=b2 ABCD parameters I1 V1 I2 Network V2 Voltages and currents in a general circuit I 2  V2  V1 V2  I1  I 2 This can be written as V1  V2  I 2 I1  V2  I 2 Or V1  AV2  BI 2 I1  CV2  DI 2 A –ve sign is included in the definition of D In matrix form V1   A B   V2   I   C D  I    2  1  Given V1 and I1, V2 and I2 can be determined if ABDC matrix is known. Cascaded network I1a V1a I2a a V1a   Aa  I   C  1a   a I1b I2b b V2a V1b V1b   Ab  I   C  1b   b Ba   V2a  Da   I 2a  V2b Bb   V2b  Db   I 2b  However V2a=V1b and –I2a=I1b then V1a   Aa  I   C  1a   a Ba   Ab Da  Cb Bb   V2b  Db   I 2b  Or just convert to one matrix V1a   A B   V2b   I   C D  I    2b   1a   The main use of ABCD matrices are for chaining circuit elements together Where  A B   Aa C D  C    a Ba   Ab Da  Cb Bb  Db  Determination of ABCD parameters V1  AV2  BI 2 I1  CV2  DI 2 Because A is independent of B, to determine A put I2 equal to zero and determine the voltage gain V1/V2=A of the circuit. In this case port 2 must be open circuit. V A 1 V2 I C 1 V2 for port 2 open circuit B for port 2 short circuit 2 0 I 2 0 for port 2 open circuit I 2 0 V1  I2 V D I1  I2 V 2 0 for port 2 short circuit ABCD matrix for series impedance I1 I2 Z V2 V1 A V1 V2 for port 2 open circuit B I 2 0 for port 2 short circuit 2 0 V1= - I2 Z hence B= Z V1= V2 hence A=1 I C 1 V2 V1  I2 V for port 2 open circuit D I 2 0 I1 = - I2 = 0 hence C= 0 The full ABCD matrix can be written I1  I2 V for port 2 short circuit 2 0 I1 = - I2 hence D= 1 1 Z  0 1    ABCD for T impedance network I1 Z1 Z3 V1 A V1 V2 then Z2 I2 V2 for port 2 open circuit therefore I 2 0 V2  Z3 V1 Z1  Z 3 V1 Z1  Z 3 Z1 A   1 V2 Z3 Z3 Continue B V1  I2 V Z1 for port 2 short circuit I2 2 0 Solving for voltage in Z2 VZ 2 Z 2 Z3 Z 2  Z3  V Z 2 Z3 1 Z1  Z 2  Z3 But VZ2   I 2 Z 2 Z3 Z2 Hence B V1 ZZ  Z 2  Z1  1 2  I2 Z3 VZ2 Continue I C 1 V2 I1 for port 2 open circuit Z1 I2 I 2 0 Z3 Analysis  I 2  I1 V2   I 2 Z3  I1Z3 Therefore C I1 1  V2 Z 3 V2 Continue D I1  I2 V for port 2 short circuit 2 0 I1 Hence D I1 Z  1 2  I2 Z3 I2 Z3 I1 is divided into Z2 and Z3, thus  Z3 I2  I1 Z 2  Z3 Z1 Z2 VZ2 Full matrix  Z1 1  Z 2   1  Z 3 Z1Z 2  Z1  Z 2  Z3   Z2  1  Z3 ABCD for transmission line I1 Input V1 I2 Transmission line z = - Zo g V2 z =0 V f e j t e g z  Vb e j t eg z For transmission line V ( z )  V f e j t e g z  Vb e j t eg z I ( z)   1 V f e j t e g z  Vb e j t eg z Zo Zo   Vf If  Vb Ib f and b represent forward and backward propagation voltage and current Amplitudes. The time varying term can be dropped in further analysis. continue At the input z = -  V1  V ()  V f e g   Vb e g  (1) I1  I ()   1 V f eg   Vb e g  Zo  (2) At the output z = 0 V2  V (0)  V f  Vb (3) Now find A,B,C and D using the above 4 equations A V1 V2  1 I 2  I (0)  V f  Vb Zo for port 2 open circuit I 2 0 For I2 =0 Eq.( 4 ) gives Vf= Vb=Vo giving  (4) continue From Eq. (1) and (3) we have A B g Vo (e V1  I2 V e 2Vo g  )  cosh( g ) for port 2 short circuit Note that (e x  e  x ) cosh( x)  2 (e x  e  x ) sinh( x)  2 2 0 For V2 = 0 , Eq. (3) implies –Vf= Vb = Vo . From Eq. (1) and (4) we have Z oVo (eg   e g  ) B  Z o sinh( g ) 2Vo continue C I1 V2 for port 2 open circuit I 2 0 For I2=0 , Eq. (4) implies Vf = Vb = Vo . From Eq.(2) and (3) we have Vo (eg   e g  ) sinh( g ) C  2Vo Z o Zo D I1  I2 V for port 2 short circuit 2 0 For V2=0 , Eq. (3) implies Vf = -Vb = Vo . From Eq.(2) and (4) we have  Z oVo (eg   e g  ) D  cosh( g )  2 Z oVo continue The complete matrix is therefore cosh(g ) Z o sinh( g )  sinh( g )  cosh(g )    Zo  When the transmission line is lossless this reduces to  cos( k )  sin( k ) j  Zo jZo sin( k )  cos( k )   Note that g    jk Where = attenuation k=wave propagation constant Lossless line =0 cosh( jk )  cos( k) sinh( jk )  j sin( k) Table of ABCD network Transmission line Z Series impedance Z Shunt impedance cosh(g ) Z o sinh( g )  sinh( g )  cosh( g  )   Z o   1 Z  0 1     1 0 1   Z 1 Table of ABCD network Z1 Z2 T-network Z3 Z3 Z1 Z2 p-network  Z1 1  Z 2   1  Z 3 Z3   1  Z 3   Z2   Z Z 1 1    3 1 3   Z1 Z 2 Z1Z 2 Z1  n 0   1 0 n  n:1 Z1Z 2  Z3   Z2  1  Z3 Z1  Z 2  Ideal transformer Short transmission line Lossless transmission line ABCD tline  cos(k )   sin( k ) j  Zo If  << l then cos(k ) ~ 1 and sin (k  ) ~ k  ABCD tlineshort jZo sin( k )  cos(k )   then  1  1 j k  Zo jZo k   1   Embedded short transmission line Z1 ABCD embed Solving, we have ABCD embed Transmission line  1 0  1   1 1  1 Z j Z k  1  o Z1 jZo k   1 0  1  1 1   Z  1  jZo k    1 jZo k    Z1    2  jZo k   j k  1  jZo k    Z1 Zo Z1  Z12 Comparison with p-network ABCDp net ABCD embed Z3  1   Z2   1  1  Z3  Z1 Z 2 Z1Z 2  Z3   Z3  1 Z1  jZo k    1  jZ k  o   Z1   jZ k  jZ k  2 k  o   o j  1   Z1 Zo Z1  Z12 It is interesting to note that if we substitute in ABCD matrix in p-network, Z2=Z1 and Z3=jZok we see that the difference is in C element where we have extra term i.e k j Zo So the transmission line Zok  k Both are almost same if  exhibit a p-network 2 Zo Z1 Comparison with series and shunt Series If Zo >> Z1 then the series impedance Z  jZo k  This is an inductance which is given by L Zo  c Where c is a velocity of light Shunt If Zo << Z1 then the series impedance Z j This is a capacitance which is given by C k Zo  Z oc Equivalent circuits  Zo ZoL Zo Zo >> Z1 L Zo  c C  Z oc  Zo Zoc Zo << Z1 Zo Transmission line parameters It is interesting that the characteristic impedance and propagation constant of a transmission line can be determined from ABCD matrix as follows B Zo  C 1 1  1 g  cosh  A  ln  A  A2  1      Conversion S to ABCD For conversion of ABCD to S-parameter  S11 S  21  Z o A  B  Z o2C  Z o D  S12  1 2Z o  AD  BC     S 22  Z o A  B  Z o2C  Z o D  2Z o  Z o A  B  Z o2C  Z o D  For conversion of S to ABCD-parameter Z o 1  S11 1  S 22   S12 S 21   1  S11 1  S 22   S12 S 21 A B 1   C D  2S  1 1  S11 1  S 22   S12 S 21     1  S 1  S  S S 11 22 12 21    21 Z  o  Zo is a characteristic impedance of the transmission line connected to the ABCD network, usually 50 ohm. MathCAD functions for conversion For conversion of ABCD to S-parameter S ( A)  2.Z .A1,1. A2,2  A1,2 . A2,1  Z . A1,1  A1,2  Z .Z . A2,1  Z . A2,2  1  2.Z  Z . A1,1  A1,2  Z .Z . A2,1  Z . A2,2  Z . A1,1  A1,2  Z .Z . A2.1  Z . A2,2  For conversion of S to ABCD-parameter . 1  S 2,2   S1,2 .S 2,1 Z .1  S1,1  . 1  S 2,2   S1,2 .S 2,1   1  S1,1  1   A( S )  . 1  . 1  S 2,2   S1,2 .S 2,1  1  S1,1  . 1  S 2,2   S1,2 .S 2,1  2.S 2,1  .1  S1,1   Z o   Odd and Even Mode Analysis Usually use for analyzing a symmetrical four port network (1) Excitation •Equal ,in phase excitation – even mode •Equal ,out of phase excitation – odd mode (2) Draw intersection line for symmetry and apply •short circuit for odd mode •Open circuit for even mode (3) Also can apply EM analysis of structure •Tangential E field zero – odd mode •Tangential H field zero – even mode (4) Single excitation at one port= even mode + odd mode Example 1 Edge coupled line 1 2 Line of symmetry 4 3 The matrix contains the odd and even parts  S11ev  S11od  1  S 21ev  S 21od S   2  S31ev  S31od   S 41ev  S 41od S12ev  S12od S13ev  S13od S 22ev  S 22od S32ev  S32od S 42ev  S 42od S 23ev  S 23od S33ev  S33od S 43ev  S 43od S14ev  S14od  S 24ev  S 24od  S34ev  S34od   S 44ev  S 44od  Since the network is symmetry, Instead of 4 ports , we can only analyze 2 port continue We just analyze for 2 transmission lines with characteristic Ze and Zo respectively. Similarly the propagation coefficients be and bo respectively. Treat the odd and even mode lines as uniform lossless lines. Taking ABCD matrix for a line , length l, characteristic impedance Z and propagation constant b,thus ABCD tline  cos( b )   sin( b ) j Z  jZ sin( b )  cos( b )   Using conversion  Z o A  B  Z o2C  Z o D  2Z o  AD  BC  S     2Z o  Z o A  B  Z o2C  Z o D  Z o A  B  Z o2C  Z o D  1 continue   Z 2  Z o2    j sin b   Z 1    S     Z 2  Z o2   2Z o 2Z cos b   j sin b   Z2     Taking b   p 2  2Z o    Z 2  Z o2   j sin b    Z   (equivalent to quarter-wavelength transmission line) Then  Z 2  Z o2 S   2 2  Z  Z o  j 2ZZ o 1  j 2ZZ o   Z 2  Z o2  continue S13 S23 Odd + even S11 S12 S21 S22 Convert to S31 S11 S12 S21 S22 S11 S12 S21 S22 S11 S12 S21 S22 S11 S12 S21 S22 S14 S24 S34 S33 S44 S41 2-port network matrix S42 S32 4-port network matrix S43 continue Follow symmetrical properties ev+ od S11 S12 S21 S22 S13 S14 S23 S24 ev- od ev- od S31 S32 S41 S42 S33 S34 S43 S44 ev+ od Assuming bev = bod = p 2 Then S 41  S14  S32 jZo  Z ev Z od   S 23    2 2 2  2  Z ev  Z o Z od  Z o2  2   ( Z Z  Z jZo  ev od o ) ( Z od  Z ev )   2 2 2  ( Z ev  Z o2 ) ( Z od  Z o2 )  For perfect isolation (I.e S41=S14=S32=S23=0 ),we choose Zev and Zod such that Zev Zod=Zo2. continue ev+ od S11 S12 S21 S22 S13 S14 S23 S24 ev- od ev- od S31 S32 S41 S42 S33 S34 S43 S44 ev+ od Similarly we have S11  S 22 2 2  Z o2 Z od  Z o2  1  Z ev  S33  S 44   2 2 2  2  Z ev  Z o Z od  Z o2  2 2  Z ev Z od  Z o4 1    2 2 2  ( Z ev  Z o2 )( Z od  Z o2 )  Equal to zero if Zev Zod=Zo2. continue ev+ od S11 S12 S21 S22 S13 S14 S23 S24 ev- od ev- od S31 S32 S41 S42 S33 S34 S43 S44 ev+ od We have S31  S13  S 24  S 42 2 2  Z o2 Z od  Z o2  1  Z ev   2 2 2  2  Z ev  Z o Z od  Z o2  2 2 2   ( Z  Z ) Z ev od o   2 2 2 2  ( Z  Z )( Z  Z )  o od o   ev  Z ev  Z  od   Z Z  od   ev if Zev Zod=Zo2. continue ev+ od S11 S12 S21 S22 S13 S14 S23 S24 ev- od ev- od S31 S32 S41 S42 S33 S34 S43 S44 ev+ od S 21  S12  S34 jZo  Z ev Z od   S 43    2 2 2  2  Z ev  Z o Z od  Z o2   1   jZo  Z Z od  ev     if Zev Zod=Zo2. continue This S-parameter must satisfy network characteristic: (1) Power conservation 2 2 S11  S21 Reflected power 2 2  S31  S41  1 transmitted power to port 2 transmitted power to port 3 transmitted power to port 4 Since S11 and S41=0 , then 2 2 S21  S31  1 (2) And quadrature condition  S11  p    Arg  2  S 21  continue For 3 dB coupler  Z ev  Z od  Z Z od  ev 2   1  2  or  Z ev  Z od  Z Z od  ev   1  2  Rewrite we have Z ev  1  ( 2 )    3 2 2   Z od  1  ( 2 )  Z ev In practice Zev > Zod so  3  2 2  5.83 Z od However the limitation for coupled edge Z ev 2 Z od (Gap size ) also bev and bod are not pure TEM thus not equal A l/4 branch line coupler Odd 90o 1 Z2 2 90o 1 Z2 2 Z1 Z1 45o Z1 90o Z1 90o Symmetrical line Even 1 90o 4 Z2 45o 90o Z2 2 3 Z1 Z1 45o 45o O/C O/C Analysis Stub odd (short circuit) Stub even (open circuit) X s ,od p   Z1 tan    Z1 4 X s ,ev p    Z1 cot    Z1 4 The ABCD matrices for the two networks may then found :  1 0  0 ABCD   1 1  j  jX  Z  s  2 stub jZ2   1  1 0    jX s Transmission line stub  Z2 0  Xs  1  j jZ2    2  Z2 X s  jZ2   Z2  X s  continue Convert to S  Z o A  B  Z o2C  Z o D  2Z o  AD  BC  S     2Z o  Z o A  B  Z o2C  Z o D  Z o A  B  Z o2C  Z o D  1  Z o2 Z 2 Z o2 j  jZ 2  j 2 Z2 1 X  s  2Z o Z 2 Z o2 Z 2 Z o2  2Z o  jZ 2  j j  2 Xs Z 2  Xs  2Z o   Z o2 Z 2 Z o2  jZ 2  j j  2 Z 2  Xs For perfect isolation we require S11ev  S11od  S11ev  S11od  0 S11  jZ2  j Z o2 Z 2 X s2 Z o2 j 0 Z2 or Thus Xs   S11ev  S11od  0 Zo Z2 Z o2  Z 22  Z1 From previous definition continue Substituting into S-parameter gives us S odd 0  Z 2 2 Z o  Z 2  jZ2  o 1 Zo  0  and 0 S even   2 2 Z Z o  Z 2  jZ2  o Therefore for full four port 1 Z S 21  S12  S 43  S34  S 21ev  S 21od    j 2 2 Zo S 41  S14  S32 1 Z 22  S 23  S 21ev  S 21od    1  2 2 Zo S11  S22  S33  S44  0 And S31  S13  S42  S24  0 1 Zo  0  continue For power conservation and quadrature conditions to be met Equal split S S 21 Z 1  2  Zo 2 or And X s  Z1  Zo Z2 Z o2  Z 22 Z2   Zo Zo 2 Z  Z o2   o   2 If Zo= 50  then Z2 = 35.4  2 Zo 2  Zo