Download Slide 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Green Transistor for 10X Lower IC Power ?
Chenming Hu
University of California, Berkeley
Supported by: DARPA STEEP, FCRP-MSD
Electronics Infrastructure
the world enabled
electronic systems
IC chips
$
fabs
transistors
27nm
30nm
Buried Oxide
6/2009 Chenming Hu
Expectation:
ICs will be even more..
• Affordable (size reduction..):
manufacturing, device physics limit,…
• Useful (speed, density..): natural human
interface, bio-medical sensing…
• Usable (low power): heat management,
portability, global energy conservation…
6/2009 Chenming Hu
Power Consumption Problems
1. Thermal management/package issues may
limit integration density.
2. IC usage of electricity at an inflection point.
• ICs use a few % of world’s electricity today and
growing exponentially.
• Power per chip is growing.
• IC units in use also growing.
3. Need to reduce IC power consumption with
architecture and circuit innovations, and a
low voltage transistor.
6/2009 Chenming Hu
IC Power Consumption Rising Much Faster Than
Past Trend
• Because power consumption Vdd2
• and Vdd (operation voltage) scaling has
slowed.
Technology
Node
Vdd
0.25
μm
0.18
μm
0.13
μm
90
nm
65
nm
45
nm
32
nm
22
nm
16
nm
2.5 V 1.8 V 1.3 V 1.2 V 1.1 V 1.0 V 0.9 V 0.8 V 0.7 V
High Performance ITRS Roadmap
6/2009 Chenming Hu
Why Vdd scaling slowed
•We used to control power by scaling Vdd and
maintain good speed by reducing Tox.
Speed transistor current μ ( Vdd – Vt ) / Tox
•But, Tox can not be reduced much more, not
even with high-k dielectrics.
•But new materials will raise the mobility, μ
1.2 nm SiO2
6/2009 Chenming Hu
New material, e.g. Ge film on Si substrate
Gate
3nm Ge film
Source
Drain
Oxide
Silicon
Industry is also funding InGaAs, InAs, and
graphene MOSFET research.
6/2009 Chenming Hu
How to Reduce Power by 20X
Two steps to reduce Vdd to 0.2V for 20x power
reduction?
1. Reduce Vdd – Vt to < 0.15V with highmobility-channel material (Ge, III-V,
graphene...), etc.
2. Reduce Vt to 50mV. But, there is the
fundamental 60mV/decade turn-off limit …..
6/2009 Chenming Hu
Ioff Limit - 60mV/decade Swing
Drain Current, IDS (A/m m)
Lowering Vt by 60mV increases the leakage
current (power) by 10 times.
-3
10
Source: Intel Corporation
Lower
V
Vt t
-5
10
-7
10
I d (Vg  0)  I d (Vg  Vt )e
-9
10

Vt
Vs
-11
10
0.0
0.3
0.6
0.9
Gate Voltage, VGS (V)
9
6/2009 Chenming Hu
The “fundamental” 60mV/decade Limit
VG
COX
Ec
Ev
Source
Channel
Drain
Electrons go over a potential barrier. Leakage current is
determined by the Boltzmann distribution or 60
mV/decade, limiting MOSFET, bipolar, graphene
MOSFET…
How to overcome the limit:
Let electrons go through the energy barrier,
not over it  tunneling
10
6/2009 Chenming Hu
Semiconductor Band-to-Band Tunneling
EC
EV
A known mechanism of leakage current since 1985.
J. Chen, P. Ko, C. Hu, IEDM 1985
Called Gate Induce Drain Leakage (GIDL) because
the current depends on the gate voltage.
6/2009 Chenming Hu
Basic Tunnel Transistor Structure
N+ Source
P-
P+ Drain
Some references
W. Reddick, G. Amaratunga, Appl. Phys. Letters, vol. 67, 1994.
W. M. Reddick, et al., Appl. Phys. Lett., vol. 67(4), pp. 494-497, 1995.
C. Aydin, A. Zaslavsky, et al., Appl. Phys. Lett., vol. 84(10), pp. 1780-82, 2004.
WY. Choi et al., Tech. Dig. Int. Electron Device Meet, pp. 955-958, 2005.
K. K Bhuwalka, et al., Jpn. J. of Appl. Phys., vol. 45(4B), pp. 3106-3109, 2006.
Th. Nirschl, et al., Electron Device Letters, vol. 28(4), p. 315, 2007.
~100X less current than MOSFET
Need a more optimal tunneling transistor structure.
12
6/2009 Chenming Hu
Green Transistor (gFET)--Simulation
G
P+ Pocket
S
N+
P-
P+
C. Hu et al, 2008 VLSI-TSA, p.14, April, 2008
D
Buried Oxide
P+ Pocket
Gate
Hole flow
Electron flow
Energy band diagram
N+ Source
P+ Drain
Simulated carrier generation rates
Large field, good capacitive coupling between gate and pocket,
abrupt turn-on due to over-lap of valence/conduction bands,
adjustable tun-on voltage.
13
6/2009 Chenming Hu
gFET vs Basic Tunnel FET-simulation
1E-03
EOT= 1 nm
VDD=1V
Lg=40nm
Drain Current,
DS (A/µm)
I DSI(A/um)
1E-04
1E-05
1E-06
EOT= 4.5 nm
VDD=4V
gFET
1E-07
1E-08
1E-09
1E-10
1E-11
Basic Tunnel
FET *
-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5
0.0
Gate Voltage, VVGSGS (V)
(V)
C. Hu et al, 2008 VLSI-TSA, p.14, April, 2008
* K. K Bhuwalka, et al., Jpn. J. of Appl. Phys.,
vol. 45(4B), pp. 3106-3109, 2006
6/2009 Chenming Hu
Drain Current,
IDS (µA/µm)
Ids (uA/um)
Simulated Id-Vd of 0.5V Ge gFET
800
Vgs: 0.5 V
700
Vgs: 0.4 V
600
Vgs: 0.3 V
EOT=0.5nm
500
400
300
200
100
0
0.0
0.1
0.2
0.3
0.4
0.5
(V)
Drain-Source Vgs
Voltage,
VDS (V)
• Good
output resistance and DIBL.
Lg = 40nm
C. Hu et al, 2008 VLSI-TSA, p.14, April, 2008
6/2009 Chenming Hu
Vdd (Power) Scaling Path: Reduce Band Gap
1E-02
Drain Current, IDS (µ/µm)
1E-03
Eg=0.36eV, Vdd=0.2V, EOT=5 Å, CV/I=0.42pS
1E-04
1E-05
1E-06
Eg=0.69eV, Vdd=0.5V, EOT=7 Å, CV/I=2.2pS
1E-07
Eg=1.1eV, Vdd=1V, EOT=10 Å, CV/I=4.2pS
Ids1E-08
(A/um)
Eg=0.36eV (InAs)
Eg=0.69eV (Ge)
Lg=40nm
Silicon
1E-09
1E-10
1E-11
0.0
0.2
0.4
0.6
0.8
1.0
Gate Voltage, VGS (V)
C. Hu et al, 2008 VLSI-TSA, p.14, April, 2008
6/2009 Chenming Hu
Hetero-tunneling gFET
• In lieu of low Eg semiconductor, a heterojunction
can provide a very small effective tunneling band
gap, Egeff.
Gate
~
N+ Drain
A
B Substrate
Gate Oxide
P+ Source
~
Gate
~
Egeff EC
EV
~
A
B
Egeff is 0.3eV for Si/Ge hetero-tunneling gFET.
A. Bownder et al., 8th International workshop Junction
Technology, Extended Abstracts , p.93, 2008. Also
IEEE Silicon Nanoelectronics Workshop, 2008.
6/2009 Chenming Hu
Compound Semiconductors
Egeff
• Wide choices of heterojunction
materials, band engineering and
strain engineering.
•Example: InAs-AlGaSb
provides tunable Egeff from
positive to negative values.
• Very low voltage gFET may be
possible.
18
6/2009 Chenming Hu
Ge-Source Tunnel Transistor
Gate
P+ Ge
Si
SiO2
1.E-07
Drain
N+ Si
ID [A/mm]
Source
1.E-09
1.E-11
Experiment
1.E-13
Model
1.E-15
-0.6
-0.4
-0.2
0
0.2
0.4
VGS [V]
VD=0.5V
LG=5mm
S [mV/dec]
W=0.33mm
I D  AEs exp(  B / Es )
Es = |VGS+Vtunnel|/(Tox
Vtunnel ~ 0.6V
S. Kim et al., VLSI Tech Symp., 2009
ID [A/mm]
ege/eox)
Green’s Function Based Simulation
Sayeef Salahudin
Summary
• ICs use of world’s electricity is several %
and growing fast.
• A low voltage transistor can slow the
growth.
• Green Transistor may potentially provide
orders-of-magnitude IC power reduction.
6/2009 Chenming Hu
Related documents