Download What is Science Slides 91

Document related concepts

Perceptual control theory wikipedia , lookup

Regression analysis wikipedia , lookup

Transcript
What is Science?
Observe
Learn more about the scientific method:
http://teacher.nsrl.rochester.edu/phy_labs/appendixe/appendixe.ht
ml
Add to
background
information
Analyze the data
Collect data
Support
Reject
hypothesis hypothesis
Repeat
experiment
Do something
With the findings.
Form a new
Hypothesis
Create an
experiment with a
control group and
experimental group.
Everything in the
experiment should be
the same except for
the independent variable
which is the one thing
that is different.
Copyright © 2010 Ryan P. Murphy
• Experiments search for cause and effect
relationships in nature.
• Experiments search for cause and effect
relationships in nature.
• These changing quantities are called
variables.
• Does your grade depend on how much
time you spend on your work?
• Does your grade depend on how much
time you spend on your work?
– The dependent variable depends on other
factors (how much you studied, effort, etc.)
• Does your grade depend on how much
time you spend on your work?
– The dependent variable depends on other
factors (how much you studied, effort, etc.)
– Independent variable is the one you have
control over (how much you studied).
• Does your grade depend on how much
time you spend on your work?
– The dependent variable depends on other
factors (how much you studied, effort, etc.)
– Independent variable is the one you have
control over (how much you studied).
• You have control over your grades.

Variable: Changing quantity of something.
-

Variable: Changing quantity of something.
-

Variable: Changing quantity of something.
-

Variable: Changing quantity of something.
-

Independent: (Change) The variable you
have control over, what you can choose
and manipulate.

Independent: (Change) The variable you
have control over, what you can choose
and manipulate.

Independent: (Change) The variable you
have control over, what you can choose
and manipulate.

Dependent: (Observe) What you measure
in the experiment and what is affected
during the experiment.

Control: (Same) Quantities that a scientist
wants to remain constant so it’s a fair test.

Control: (Same) Quantities that a scientist
wants to remain constant so it’s a fair test.

Control: (Same) Quantities that a scientist
wants to remain constant so it’s a fair test.

Control: (Same) Quantities that a scientist
wants to remain constant so it’s a fair test.
Everything is exactly the same
except for the independent variable
Problem
Independent
Variable
(Change)
Does fertilizer Amount of
help a plant
fertilizer
to grow
(grams)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Growth of
the plant,
Height,
number of
leaves,
flowers, etc
Same
amount of
soil, light,
water,
space, all
the same.
Problem
Independent
Variable
(Change)
Does fertilizer Amount of
help a plant
fertilizer
to grow?
(grams)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Growth of
the plant,
Height,
number of
leaves,
flowers, etc
Same
amount of
soil, light,
water,
space, all
the same.
Problem
Independent
Variable
(Change)
Does fertilizer Amount of
help a plant
fertilizer
to grow?
(grams)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Growth of
the plant,
Height,
number of
leaves,
flowers, etc
Same
amount of
soil, light,
water,
space, all
the same.
Problem
Independent
Variable
(Change)
Does fertilizer Amount of
help a plant
fertilizer
to grow?
(grams)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Growth of
the plant,
Height,
number of
leaves,
flowers, etc
Same
amount of
soil, light,
water,
space, all
the same.
Problem
Independent
Variable
(Change)
Does fertilizer Amount of
help a plant
fertilizer
to grow?
(grams)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Growth of
the plant,
Height,
number of
leaves,
flowers, etc
Same
amount of
soil, light,
water,
space, all
the same.
Problem
Independent
Variable
(Change)
Does fertilizer Amount of
help a plant
fertilizer
to grow?
(grams)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Growth of
the plant,
Height,
number of
leaves,
flowers, etc
Same
amount of
soil, light,
water,
space, all
the same.
Problem
Independent
Variable
(Change)
Does fertilizer Amount of
help a plant
fertilizer
to grow?
(grams)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Growth of
the plant,
Height,
number of
leaves,
flowers, etc
Same
amount of
soil, light,
water,
space, all
the same.
Problem
Independent
Variable
(Change)
Does fertilizer Amount of
help a plant
fertilizer
to grow?
(grams)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Growth of
the plant,
Height,
number of
leaves,
flowers, etc
Same
amount of
soil, light,
water,
space, all
the same.
Problem?
Independent
Variable
(Change)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Do Pillbugs
prefer a dark
or light
environment?
One
environment
is dark, the
other is light
Count the
number of
Pillbugs that
enter dark
chamber.
Moisture in
both should
be the same,
temp, no food
preference.
Problem?
Independent
Variable
(Change)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Do Pillbugs
prefer a dark
or light
environment?
One
environment
is dark, the
other is light
Count the
number of
Pillbugs that
enter dark
chamber.
Moisture in
both should
be the same,
temp, no food
preference.
Problem?
Independent
Variable
(Change)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Do Pillbugs
prefer a dark
or light
environment?
One
environment
is dark, the
other is light
Count the
number of
Pillbugs that
enter dark
chamber.
Moisture in
both should
be the same,
temp, no food
preference.
Problem?
Independent
Variable
(Change)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Do Pillbugs
prefer a dark
or light
environment?
One
environment
is dark, the
other is light
Count the
number of
Pillbugs that
enter dark
chamber.
Moisture in
both should
be the same,
temp, no food
preference.
Problem?
Independent
Variable
(Change)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Do Pillbugs
prefer a dark
or light
environment?
One
environment
is dark, the
other is light
Count the
number of
Pillbugs that
enter dark
chamber.
Moisture in
both should
be the same,
temp, no food
preference.
Problem?
Independent
Variable
(Change)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Do Pillbugs
prefer a dark
or light
environment?
One
environment
is dark, the
other is light
Count the
number of
Pillbugs that
enter dark
chamber.
Moisture in
both should
be the same,
temp, no food
preference.
Problem?
Independent
Variable
(Change)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Do Pillbugs
prefer a dark
or light
environment?
One
environment
is dark, the
other is light
Count the
number of
Pillbugs that
enter dark
chamber.
Moisture in
both should
be the same,
temp, no food
preference.
Problem?
Independent
Variable
(Change)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Do Pillbugs
prefer a dark
or light
environment?
One
environment
is dark, the
other is light
Count the
number of
Pillbugs that
enter dark
chamber.
Moisture in
both should
be the same,
temp, no food
preference.
Problem?
Independent
Variable
(Change)
Dependent
Variable
(Observe)
Control
Variable
(Same)
Do Pillbugs
prefer a dark
or light
environment?
One
environment
is dark, the
other is light
Count the
number of
Pillbugs that
enter dark
chamber.
Moisture in
both should
be the same,
temp, no food
preference.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on his counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the time it takes each one in minutes in
her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the time it takes each one in minutes in
her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the time it takes each one in minutes in
her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the minutes it takes for each one to melt
in her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the minutes it takes for each one to melt
in her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the minutes it takes for each one to melt
in her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the minutes it takes for each one to melt
in her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the minutes it takes for each one to melt
in her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the minutes it takes for each one to melt
in her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the minutes it takes for each one to melt
in her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the minutes it takes for each one to melt
in her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the minutes it takes for each one to melt
in her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the minutes it takes for each one to melt
in her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
• A student wants to find out what minerals melt
ice the fastest. So the student places halite,
calcite, hematite, and pyrite on equal sized
cubes of ice on her counter in the kitchen. The
student times how long it takes each mineral to
melt completely through the ice cube. She
records the minutes it takes for each one to melt
in her science journal.
• Problem? = What minerals melt ice quickly?
• Independent Variable =Types of Minerals
• Dependent Variable = Time in minutes
• Control = Same size ice, temperature acts the
same on all of them.
– Everything is the same except for the minerals
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The students
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The students records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The students records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The students records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The student records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The student records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The student records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The student records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The student records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The student records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The student records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The student records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers.
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The student records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers.
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out how cigarette smoke
blown into a small greenhouse of plants damages
the plant. The student grows two small plants in
separate clear plastic soda bottles. The student
injects one with cigarette smoke periodically. Both
are watered and given the same light conditions.
The student records the height, number of leaves,
and flowers of both plants everyday for one month.
• Problem? = Does cigarette smoke damage plants?
• Independent Variable = Cigarette Smoke
• Dependent Variable = Height of plants, leaves,
flowers.
• Control = Both containers were identical except one
was given cigarette smoke (independent variable).
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.
• A student wants to find out if an egg will crush more
easily standing straight-up or on its side. The
student creates a chamber that allows weights to be
placed on a board that lies on top of the egg. The
student places weights in grams on the board with
an egg standing straight, and then on its side. The
student records the total weight that was on the
board when the egg crushed.
• Problem? = What side of the egg is strongest?
• Independent Variable = Egg straight or on side.
• Dependent Variable = Weights in grams
• Control = Similar brand of egg, similar size, same
temp, everything is the same.