Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Changement de régime dans le réseau alimentaire du bank Georges et rétablissement des stocks de poissons surexploités Jeremy Collie Graduate School of Oceanography University of Rhode Island [email protected] 22 May 2017 8e Forum haliemétrique 1 Sommaire Changements à long terme dans les communautes de poissions, causes par l’exploitation et le climat; La variation climatique éffectue des changements dans le réseau alimentaire; Example: ecosystème du banc Georges; • Modèle du réseau alimentaire linéaire; • Modèle biomass-dynamique plurispécifique; • Modèle structuré d’après l’âge plurispécifique; • Modèle multi-équilibre; • La dynamique mono-spécifique de l’églefin. Conclusions génerales Gradient Gradientof ofModel Model Complexity Complexity Single-species Multi-species Aggregate Ecosystem Gadids Flatfish Single-species models: useful for stock assessment and management; Can add explicit predators, habitat or climate considerations. Pelagics Age structured multispecies assessments; Food-web or energy-budget models; Multispecies production models. May be massbalance or dynamic. Whole Ecosystem Messy Picture Here Whole ecosystem models: forget population dynamics. Modified from Link (2002) Fisheries 27:18-21 Example: Georges Bank Ecosystem Image from Peter Wiebe (2002) Oceanography 15:14. 22 May 2017 8e Forum haliemétrique 4 Piscivorous fish Juvenile fish Benthivorous fish Planktivorous fish Carnivorous benthos Suspension feeders Carnivorous plankton Deposit feeders Mesozooplankton Feces Loss Detritus Microzooplankton Loss Loss Small phytoplankton Loss Large phytoplankton NO Ammonia 3 Loss (a) Mesozooplankton 15 10 Spatial zones 5 0 Fall/Winter Spring Summer Production (gC m-2) (b) Suspension feeding benthos 5 Stratified Transition Mixed 4 3 2 1 0 Fall/Winter Spring Summer (c) Deposit feeding benthos 4 Zooplankton 27.0 3 Benthos 2 1 0 Integrated production (gC m-2 yr-1) Fall/Winter Spring Season Summer 10.5 Piscivorous fish Juvenile fish Benthivorous fish Planktivorous fish Carnivorous benthos Suspension feeders Carnivorous plankton Deposit feeders Mesozooplankton Feces Loss Detritus Microzooplankton Loss Loss Small phytoplankton Loss Large phytoplankton NO Ammonia 3 Loss (a) Planktivores 50 40 Other 30 Herring Butterfish 20 Mackerel 10 Sand lance 0 1965 1970 1975 1980 1985 1990 1995 2000 (b) Piscivores Biomass (g m-2) 25 Other 20 Silver hake 15 Pollock 10 Cod Spiny dogfish 5 0 Winter skate 1965 1970 1975 1980 1985 1990 1995 2000 (c) Benthivores 15 Other Yellowtail flounder 10 Little skate Longhorn sculpin 5 Haddock Ocean pout 0 1965 1970 1975 1980 1985 Year 1990 1995 2000 Data from Stockhausen, NMFS Biomass of Predator Guilds Biomass 3 Planktivores Piscivores Benthivores 2 1 0 Consumption by Predator Guilds Consumption 10 Plankton Fish 5 Benthos 0 Consumption by Prey Source Consumption 15 Plankton Benthos 10 5 0 1963-1972 1973-1982 1983-1992 Stanza 1993-2002 Balancing the upper and lower food webs Fish Feeders Four Stanzas: 1963-2002 Benthos Feeders Plankton Feeders Carnivorous benthos Carnivorous plankton Benthos Plankton Lower Web GLOBEC: 1995-1999 Fish consumption accounts for all the production from the lower food web Plankton gC m-2 yr-1 30 20 Carnivorous plankton Fish Unconsumed 10 0 Benthos gC m-2 yr-1 15 10 Carnivorous benthos Fish Unconsumed 5 0 Production from lower food web 63-7273-82 83-9293-02 Stanza Low Nitrate Steele, Collie, Gifford, et al. (In press) Conclusions from the food webs The lower food web accounts for recycling, spatial and seasonal differences, and advective losses; Commercially-important species have been replaced with non-commercial species; Plankton consumption has increased relative to benthos; There is some evidence of bottom-up control of fish production in the 1960s; Outputs from the lower food web limit fish production; Therefore, recovery of the commercial fish species requires reductions in non-commercial species. 0.8 Is there enough food for a recovered cod stock? 0.2 0 100 1960s 1970s 1980s 1990s 2004 Survey 2007 2008 Targets 2009 Bmsy Binf Reference levels Production (gC m-2 yr-1) 0.4 300 200 8.8 0 Biomass (kt) 400 0.6 500 21 Food-web modifications J.H. Steele (Personal Communication) (a) Individual change x 1.8 2.8 1.6 1.4 1.2 x 2.0 1 0.8 0.6 0.4 0.2 No Change 0 Factor Inc. st d r m un aj Pi s no c IC no Z I m CB or eS le B ss m Mz in D et r I II III IV V VI VII Cumulative change (b) 4 3.5 -2 -1 gC.m gC.m-2.year .year-1 Scenarios: I. Make cod the dominant species in the piscivore guild; II. Make piscivores the dominant guild; III. Eliminate carnivorous zooplankton (jellyfish); IV. Eliminate carnivorous benthos; V. Increase suspension-feeding benthos; VI. Reduce microzooplankton; VII. Reduce flux of phytoplankton to the benthos. 3 2.5 Plank Benth Pisc 2 1.5 1 Binf Bmsy 0.5 0 init. Cod std maj no no more less min run Pisc ICZ ICB SB Mz Detr Multispecies production models of the Georges Bank fish community Model Formulation (gadoids as example): r 2 Gt 1 Gt rGt 1 Gt 1 Yt species interaction terms k Competition (negative) cgeGt 1Et 1 Predation (positive or negative) Type I dgpGt 1Pt 1 22 May 2017 Type II Type III d gpGt 1Pt 1 d gpGt 1Pt21 1 agf F8t Forum agp Pt 1 1 haliemétrique 2 1 agf Ft21 agp P 15t 1 e Simplified Georges Bank Food Web gadoids + Type III interactions - Type I interactions flatfish - - pelagics elasmobranchs + Collie and DeLong (1999) Single and multispecies model fits 1200 Gadoids 1000 800 600 . observed single-species muti-species yield 80 70 60 50 40 30 20 10 0 1964 400 200 0 1964 1969 1974 1979 1984 1989 700 600 Flatfish 1969 1974 1979 1984 1989 250 Pelagics 200 Elasmobranchs 500 400 150 300 100 200 50 100 0 1964 1969 1974 1979 1984 0 1964 1989 Year 1969 1974 1979 1984 1989 Gadoids 1200 . 1000 800 600 observed model fit yield positive effect of pelagics competition with elasmobranchs 400 200 0 1964 1969 1974 1979 Year 1984 1989 Gadoid equilibrium yield depends on the harvest rates of the other groups hmsy 0.5 0.3 0.2 hmsy 0.1 0.0 0.2 0.4 Gadoid harvest rate 0.0 0.6 Pelagic harvest rate 0.4 90-105 75-90 60-75 45-60 30-45 15-30 0-15 Conclusions from multispecies production models Multispecies production models can be fit statistically to time series of abundance data; In this example the multispecies models fit significantly better than single-species models; Gadoids and elasmobranchs compete with each other and prey on pelagics and flatfish; Trade-offs exist between predator and prey yields (May et al. 1979); Biological reference points depend on the abundances of other taxa (Collie & Gislasson 2001). Multispecies Virtual Population Analysis of the Georges Bank fish community silver hake winter skate sand lance haddock herring female dogfish male dogfish yellowtail flounder cod mackerel Tsou & Collie (2001a) catchat-age diet composition other food M& weight consumption terminal at age rates Fs MSVPA estimation of suitability coefficients fishing mortality stock numbers suitability coefficients from Per Sparre (1991) predation mortality Predation mortality rates are high 1.8 Predation mortality 1.6 Age 0 Age 1 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 cod silver hake haddock mackerel herring yellowtail flounder Prey species Tsou & Collie (2001b) Biomass of prey consumed by year and predator 1981 1984 1987 4 0 2 Biomass consumed (kt) 6 8 400 300 200 Biomass consumed (kt) haddock 100 1990 1978 1981 1984 1987 1990 1978 1981 1984 1987 1990 Year Year mackerel herring yellowtail flounder 221978 May 1981 20171984 Year 1987 1990 4 3 0 0 0 1 2 Biomass consumed (kt) 150 100 Biomass consumed (kt) 50 6 4 2 5 200 Year 8 1978 Biomass consumed (kt) silver hake 0 5 10 wsk mdg fdg had shk cod 0 Biomass consumed (kt) 15 cod 8e Forum haliemétrique 1981 1984 1987 1990 1978 Year 1978 1981 1984 Year 1987 1990 24 Total prey biomass over time 1400 1200 b Biomass (kt) 1000 ytf her 800 mck had 600 shk cod 400 200 0 1978 1981 1984 1987 1990 Year 22 May 2017 8e Forum haliemétrique 25 0.4 0.6 0.8 1978 1981 1984 Year 1987 1990 1978 1981 1984 1984 Year 1987 Year Year female dogfish male dogfish winter skate 1987 1990 1.0 1981 0.8 1978 0.6 0.0 0.4 0.6 0.8 0.4 0.6 0.8 0.2 0.4 0.6 0.8 Proportion of biomass consumed 0.2 Proportion of biomass consumed 0.2 Proportion of biomass consumed 1.0 1.0 1.0 silver hake 0.4 0.0 0.0 cod 0.2 Year 1.0 1990 Proportion of biomass consumed 0.8 1987 0.6 1984 0.4 1.0 1981 0.2 Proportion of biomass consumed 0.2 Proportion of biomass consumed 1978 0.0 0.0 0.0 Species composition of the diet of six predators 1990 haddock ytf her mck had shk cod 1978 1978 1981 1981 1984 1984 Year 1987 1987 1990 1990 Predation affects year-class size for some species Preda1t.i0onmrlty 2.0 Age-1abundce(mil0ons) 20 40 Silver hake 1979 01 0 20 0 3 0 0 0 0 0 0 0 0 0 1 0 0 20 0 3 0 0 0 0 0 00 0 a A b g u e n d 0 a a P1.0redationmrlty 1.5 2.0 2.5 A g e -0 Age-2abundce(milo1n0s) 30 50 1986 10 20 30 40 0 1 0 0 20 30 40 0 A g e -1 a A b g u e n d 1 a a Regimes shifts can be illustrated with a catastrophe manifold Points on the manifold represent equilibrium values of the “fast” variable (Abundance) for possible combinations of the “slow” variables, Internal Structure and External Forcing Collie, Steele, and Richardson (2004) Simple models can have multiple equilibria 0 0 1 2 C. Three Equilibria 2 B. Two Equilibria 1 2 1 0 5 10 15 20 25 30 n=2 -2 -2 -1 n=1 -1 0 -1 c=0 -2 Population growth rate A. Single Equilibrium 0 5 10 15 20 25 30 Population size dP Pn P rP 1 cH n dt D Pn K P population abundance r rate of increase K carrying capacity 0 5 10 15 20 25 30 Stable equilibrium Unstable equilibrium c consumption rate of predator H n exponent of functional response D half-saturation constant Criteria for distinguishing regime shifts A. Shift in time series D. Trajectory depends on initial state B. Bimodal distribution E. Triggered shift C. Dual relationship F. Hysteresis Scheffer and Carpenter (2003) Example: Georges Bank haddock Haddock was the most abundant demersal fish species from 1930-1965 H. L. Todd, Illustrator Overfished in the 1960s, the stock is now recovering dramatically. Photo by Howard Schuck (1953) NEFSC Photo archive Georges Bank Haddock C. Dual relationship 2000 100 Year Year 60 400 0.0 40 60 Time (years) 80 100 60 80 0.0 20 0.6 40 0.4 0.2 300 0 0.4 F. Hysteresis Fishing mortality 500 2000 0.2 Fishing mortality 0 100 Biomass (kt) 4 2 0 Lisbon-Iceland -2 -4 1980 300 E. Triggered shift Winter NAO 1960 200 Biomass D. Forcing variable 1940 40 0 0 20 1980 0 1960 Catch (kt) 1940 2004 20 Catch (kt) 10 5 0 Frequency 300 100 0 Thousand tonnes Biomass Catch 1931-1968 1969-2004 80 B. Biomodality 15 A. Regime Shift 0.0 0.2 0.4 Fishing mortality 0.6 Implications for rebuilding depleted stocks Yields are restricted by the climatic regime, or … ? … the stock can rebuild to prior high abundance. Why do some fish stocks recover … 70 500 Haddock 400 Atlantic cod Yellowtail flounder 60 50 40 300 30 200 20 100 10 0 Yellowtail Flounder Biomass (kt) Haddock and Cod Biomass (kt) 600 0 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003 Year … while others don’t? Control Rule for Georges Bank Haddock 3.5 Bmsy Relative Fishing Mortality 3.0 Equilibrium Trajectory 2.5 2.0 1967 1.5 1.0 Fmsy 0.5 2000 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Relative Spawning Stock Biomass (kt) 22 May 2017 8e Forum haliemétrique 35 General Conclusions Bottom-up forcing of marine food webs alters community structure and fish productivity; Strong trophic interactions imply trade-offs in fisheries yields; Fishing can induce regime shifts and delay the recovery from climate-driven shifts; Single-species are assessed and managed within this ecological milieu; Fish stocks can recover from overexploitation, if management sets the stage. 22 May 2017 8e Forum haliemétrique 36 Acknowledgements Collaborators: John Steele Michael Fogarty Jason Link Allison DeLong Tien-shui Tsou Dian Gifford 22 May 2017 Russell Brown Funding Agencies: National Science Foundation Rhode Island Sea Grant NOAA Coastal Ocean Program 8 Forum haliemétrique e 37