Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Table 4-1.Nondimensional Scaling Parameters. Notation: c = speed of sound; D = characteristic width; g = acceleration due to gravity; L = characteristic length; p = fluid static pressure (absolute); pa= ambient pressure; S = span length; T = temperature; U = flow velocity; z = vertical distance; a = thermal diffusivity; E = roughness height (frame I ) , average power dissipated per unit mass of fluid (frame 11); v = kinematic viscosity; p = fluid density; a = surface tension. Consistent sets of units are given in Table 3-1. P a r a m e t e r Name 1. Boundary Geometry I 1 Definition I L Slenderness = D Roughness = I Physical Significance Application S c a l e boundary geometry ' D S Aspect r a t i o = D (and o t h e r s ) I 2. t Euler Number 3. Reynolds Number 4. Mach Number I Pressure force Inertia force - I G e n e r a l f l u i d dynamic analysis Inertia force Viscous Force General viscous f l u i d dynamic a n a l y s i s Fluid velocity Speed of s o u n d Employed i n f l o w s w i t h M 10.3. w h e r e t h e Mach number i s a m e a s u r e o f t h e tendency of flow t o compress a t a boundary. 1 U M = c Example: 5. Froude Number Inertia force Gravity force U 1/ L !I I -T Free surface fluid dynamics ~ x a m ~ l e o:c e a n w a v e s Inertia force Surface tension Weber Number F l u i d dynamics of s m a l l f r e e s u r f a c e flows Example: I' 7. Cavitation Number Vapor p r e s s u r e - s t a t i c p r e s s u r e F l u i d dynamic p r e s s u r e c a p i l l a r y waves I Liquid flows i n which s t a t i c pressure i n fluid may F a l l b e l o w v a p o r p r e s s u r e of t h e l i q u i d . Example: Richardson Number transonic aircraft l i q u i d pumps I 1 Buoyancy e n e r g y Turbulent energy Ri = S t a b i l i t y of f l u i d f i e l d with density s t r a t i f i cation Example: thermal o r salinity-induced density s t r a t i f i c a t i o n i n oceans 9. Rayleigh Number R3 = Freely convective flows i m p e l l e d by t h e r m a l gradients l i I ~ a a m p l e : thermal plumes 10. Strouhal Number 1- I) Fluid convection i n time l / f C h a r a c t e r i s t i c width 1 Fluid flows with periodic oscillations 1 vortex shedding From a c i r c u l a r c y l i n d e r 1 Example: 1I. Kolmogoroff Scales L e n g t h s c a l e : eddy s i z e a t which v i s c o u s a n d i n e r t i a forces a r e comparable Time s c a l e : characteristic frequency f o r deformation of these eddies F i n e s t r u c t u r e s of turbulent flows Example: scaling turbulent spectra i n the high-frequency range TABLE7.1 Flow characteristics and similitude scale ratios (ratio of prototype quantity to model quantity) Scale ratios for laws of Characteristic Dimension Reynolds Froude Mach (L3~>r (L3p>, (L3pg), (L2Eu)r Geometric Length Area Volume Kinematic Time Velocity Acceleration Discharge Dynamic Mass M Force MLT-* (L3p>, Pressure Impulse and momentum MLT-' Energy and work ML~T-~ Power ML2T-' Note: Usuallv P (L2pr is the same in model and DrototvDe. ( L ~ ' ~ ~ ~ (" ~ ) ~ (L4pg)r (L3Ev), ( ~ ~ ~ ~ ~ g " ~ )