Download Code Saturne

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Code coupling for
simulation
of flow-induced
vibrations
Elisabeth LONGATTE
Fabien HUVELIN
Mhamed SOULI
1
2005
EDF R&D
FRAMEWORK
ASTER
COMPUTATION
SATURNE
COMPUTATION
LOADING
DISPLACEMENT
2
2005
END
END
FRAMEWORK
ASTER
COMPUTATION
SATURNE
LOADING
COMPUTATION
LOADING
DISPLACEMENT
3
2005
END
END
FRAMEWORK
ASTER
SUPERVISOR
COSMETHYC
SATURNE
LOADING
DISPLACEMENT
COMPUTATION
LOADING
COMPUTATION
DISPLACEMENT
Convergence
Test
Conditions on time step
Conditions on sub-cycling
IF SUBCYCLING
IF SUB
CYCLING
LOADING
DISPLACEMENT
T=T + DT
T=T + DT
Si T > Tfinal
Si T > Tfinal
END
END
No
4
2005
No
CODE_SATURNE
Code_Saturne
CFD Code developed by EDF R&D
• Two- and three-dimensional calculations of steady
or transient single-phase, incompressible, laminar or
turbulent flows
 Finite volume approach
 Fully co-located arrangement of all variables
 Time discretization based on a predictorcorrector scheme
 Any kind of mesh (hybrid, any type of cell)
 RANS model, LES
 ALE formulation (moving boundary)
5
2005
CODE_ASTER
Code_Aster
CSD Code developed by EDF R&D
• Linear, non linear statics
• Linear, non linear dynamics
 Finite element method




6
2005
Time calculation (Newmark…)
Modal calculation (Newmark, Euler…)
Stochastic approaches
Dynamic response under loading
COSMETHYC
Cosmethyc
CFSD Code developed by EDF R&D
• Fluid loading
• Structure velocity
 Iterative procedure
VELOCITY
Code_Aster
LOADING
ASTSAT
SATAST
LOADING
VELOCITY
Code_Saturne
7
2005
COUPLING PROCESS
Initialization
Statics computation
Fluid solver
Coupling
Structure solver
Coupling
Fluid solver
Transient computation
Time step loop
Fluid solver
8
2005
Coupling
End
Structure solver
DATA TRANSFER
Data transfer operators
Interface
• Inlet, outlet data interpolation
• Data projection
 2D, 3D / 1D beam, 2D, 3D
9
2005
u s u f



 s n  f n
INTERPOLATION
Mesh interface
Aster mesh
Saturne mesh
Non-matching interface
10
2005
SUPERVISOR
Supervisor
Coupling scheme
• Governs time iteration
• Governs coupling scheme
 Prediction – correction on loading (convergence test)
 Sub-cycling (implicit)
SUPERVISOR
VELOCITY
LOADING
CONVERGENCE
Code_Aster
11
2005
Code_Saturne
COUPLING SCHEMES
time step
Explicit synchronous scheme
Prediction of the fluid mesh motion
 Boundary conditions on the fluid-structure
interface :
n
n
X
n 1
pred
 U  0 t
U  t U U
n

n 1
1
Fluid solver
 force computation (Fn)
Structure solver
 displacement computation (Un+1 )
Explicit staggered scheme
time step
Prediction of the fluid mesh motion
 Boundary conditions on the fluid-structure interface :
Fluid solver
 force computation (Fn+1/2)
Structure solver
 displacement computation (Un+1 )
(Farhat et al., 1995, 1997; Piperno et al.,
2005
12
1995,1997)
X
n 1/ 2
pred
U 
n
t 
2 U
n
COUPLING SCHEMES
Implicit scheme
Initialization :
X
n 1, 0
Sub-cycling
time step
Fluid solver
 force computation :
F
n 1, k
X
Structure solver
 displacement computation :
Fluid mesh motion :
X
n 1, k 1
X
n 1, k
n 1, k
U
n 1, k
,F
n
, F ,U
X
n 1, k
n
n 1, k
,U

,F
n 1, k
Convergence criterion on the force values :
n 1, k
,U
2005


F n1,k  F n1,k 1
F
13
n
n 1,k

COUPLING SCHEMES
1D test case
2
M s1 d U K s U K s U
dt
1
2
1
2
U1(t) Asin( t)
U2(0)2U1(0)
U2(t)2U1(t)
dU2 (0) 2dU1 (0)
dt
dt
2
M s2 d U  K s U  K s U
dt
2
2
 3K s

1
/M
M s M s /2
2
14
2005
1
2
1
f(-)
x (-)
Explicit synchronous
0,0
8,0 10-4
Explicit asynchronous
0,0
7,0 10 -6
Implicit
0,0
9,0 10 –12
Strong coupling
0,0
7,0 10-12
Analytical
0,0
0,0
Error calculation / theory (-)
s1
VALIDATIONS
Concentric tubes
Dim ensionless added m ass in term s of
diam eter ratio
Dimensionless
added mass Cm
10
1
1
10
St=100
St=INF
St=5000 (theorique)
St=10
St=5000
0, 1
Diam eter ratio D0/D
Dimensionless added damping in terms of
diameter ratio
Dimensionless
added damping Cv
10
1
1
0,1
0,01
15
2005
10
St=5000 (theorique)
St=10
St=100
St=5000
Diameter ratio D0/D
VALIDATIONS
Eccentric tubes
Dimensionless added mass and damping in
terms of eccentricity
Dimensionless parameters Cm,
Cv/(RHO*PI*R^2*W)
10
1
Cm
Cv/(RHO*PI*R^2*W)
Cm (MEF Chen)
Cv (MEF Chen)
0,1
0
0,1
0,2
0,3
0,4
Eccentricity e
16
2005
0,5
0,6
0,7
VALIDATIONS
Tube bundles
Frequency (Hz)
Damping (Hz)
17
2005
Experimental
Analytical
Numerical
-
20.3
20.5
0.037  0.004
0.037
0.036
VALIDATIONS
Tube bundles
V<Vc
V~Vc
18
2005
V>Vc
APPLICATIONS
19
2005
APPLICATIONS
20
2005
APPLICATIONS
21
2005
PERSPECTIVES
PARALLEL
Parallel code for
distributed memory machines
22
2005
PERSPECTIVES
PARALLEL
Domain partitioning
ALE
• Nodes
Coupling
• Data transfer operators
Wi
23
2005
PERSPECTIVES
CONTACT
24
2005
PERSPECTIVES
CONTACT
25
2005
PERSPECTIVES
CONTACT
26
2005
PERSPECTIVES
CONTACT
27
2005
PERSPECTIVES
SALOME
SUPERVISOR : To build schemes et control calculations –
(with graphics)
Node = component (fluid, mechanics, thermics)
Port = inlet / outlet parameters to and from nodes
Link = connexion between ports
Checking data types
28
2005
Related documents