Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Code coupling for simulation of flow-induced vibrations Elisabeth LONGATTE Fabien HUVELIN Mhamed SOULI 1 2005 EDF R&D FRAMEWORK ASTER COMPUTATION SATURNE COMPUTATION LOADING DISPLACEMENT 2 2005 END END FRAMEWORK ASTER COMPUTATION SATURNE LOADING COMPUTATION LOADING DISPLACEMENT 3 2005 END END FRAMEWORK ASTER SUPERVISOR COSMETHYC SATURNE LOADING DISPLACEMENT COMPUTATION LOADING COMPUTATION DISPLACEMENT Convergence Test Conditions on time step Conditions on sub-cycling IF SUBCYCLING IF SUB CYCLING LOADING DISPLACEMENT T=T + DT T=T + DT Si T > Tfinal Si T > Tfinal END END No 4 2005 No CODE_SATURNE Code_Saturne CFD Code developed by EDF R&D • Two- and three-dimensional calculations of steady or transient single-phase, incompressible, laminar or turbulent flows Finite volume approach Fully co-located arrangement of all variables Time discretization based on a predictorcorrector scheme Any kind of mesh (hybrid, any type of cell) RANS model, LES ALE formulation (moving boundary) 5 2005 CODE_ASTER Code_Aster CSD Code developed by EDF R&D • Linear, non linear statics • Linear, non linear dynamics Finite element method 6 2005 Time calculation (Newmark…) Modal calculation (Newmark, Euler…) Stochastic approaches Dynamic response under loading COSMETHYC Cosmethyc CFSD Code developed by EDF R&D • Fluid loading • Structure velocity Iterative procedure VELOCITY Code_Aster LOADING ASTSAT SATAST LOADING VELOCITY Code_Saturne 7 2005 COUPLING PROCESS Initialization Statics computation Fluid solver Coupling Structure solver Coupling Fluid solver Transient computation Time step loop Fluid solver 8 2005 Coupling End Structure solver DATA TRANSFER Data transfer operators Interface • Inlet, outlet data interpolation • Data projection 2D, 3D / 1D beam, 2D, 3D 9 2005 u s u f s n f n INTERPOLATION Mesh interface Aster mesh Saturne mesh Non-matching interface 10 2005 SUPERVISOR Supervisor Coupling scheme • Governs time iteration • Governs coupling scheme Prediction – correction on loading (convergence test) Sub-cycling (implicit) SUPERVISOR VELOCITY LOADING CONVERGENCE Code_Aster 11 2005 Code_Saturne COUPLING SCHEMES time step Explicit synchronous scheme Prediction of the fluid mesh motion Boundary conditions on the fluid-structure interface : n n X n 1 pred U 0 t U t U U n n 1 1 Fluid solver force computation (Fn) Structure solver displacement computation (Un+1 ) Explicit staggered scheme time step Prediction of the fluid mesh motion Boundary conditions on the fluid-structure interface : Fluid solver force computation (Fn+1/2) Structure solver displacement computation (Un+1 ) (Farhat et al., 1995, 1997; Piperno et al., 2005 12 1995,1997) X n 1/ 2 pred U n t 2 U n COUPLING SCHEMES Implicit scheme Initialization : X n 1, 0 Sub-cycling time step Fluid solver force computation : F n 1, k X Structure solver displacement computation : Fluid mesh motion : X n 1, k 1 X n 1, k n 1, k U n 1, k ,F n , F ,U X n 1, k n n 1, k ,U ,F n 1, k Convergence criterion on the force values : n 1, k ,U 2005 F n1,k F n1,k 1 F 13 n n 1,k COUPLING SCHEMES 1D test case 2 M s1 d U K s U K s U dt 1 2 1 2 U1(t) Asin( t) U2(0)2U1(0) U2(t)2U1(t) dU2 (0) 2dU1 (0) dt dt 2 M s2 d U K s U K s U dt 2 2 3K s 1 /M M s M s /2 2 14 2005 1 2 1 f(-) x (-) Explicit synchronous 0,0 8,0 10-4 Explicit asynchronous 0,0 7,0 10 -6 Implicit 0,0 9,0 10 –12 Strong coupling 0,0 7,0 10-12 Analytical 0,0 0,0 Error calculation / theory (-) s1 VALIDATIONS Concentric tubes Dim ensionless added m ass in term s of diam eter ratio Dimensionless added mass Cm 10 1 1 10 St=100 St=INF St=5000 (theorique) St=10 St=5000 0, 1 Diam eter ratio D0/D Dimensionless added damping in terms of diameter ratio Dimensionless added damping Cv 10 1 1 0,1 0,01 15 2005 10 St=5000 (theorique) St=10 St=100 St=5000 Diameter ratio D0/D VALIDATIONS Eccentric tubes Dimensionless added mass and damping in terms of eccentricity Dimensionless parameters Cm, Cv/(RHO*PI*R^2*W) 10 1 Cm Cv/(RHO*PI*R^2*W) Cm (MEF Chen) Cv (MEF Chen) 0,1 0 0,1 0,2 0,3 0,4 Eccentricity e 16 2005 0,5 0,6 0,7 VALIDATIONS Tube bundles Frequency (Hz) Damping (Hz) 17 2005 Experimental Analytical Numerical - 20.3 20.5 0.037 0.004 0.037 0.036 VALIDATIONS Tube bundles V<Vc V~Vc 18 2005 V>Vc APPLICATIONS 19 2005 APPLICATIONS 20 2005 APPLICATIONS 21 2005 PERSPECTIVES PARALLEL Parallel code for distributed memory machines 22 2005 PERSPECTIVES PARALLEL Domain partitioning ALE • Nodes Coupling • Data transfer operators Wi 23 2005 PERSPECTIVES CONTACT 24 2005 PERSPECTIVES CONTACT 25 2005 PERSPECTIVES CONTACT 26 2005 PERSPECTIVES CONTACT 27 2005 PERSPECTIVES SALOME SUPERVISOR : To build schemes et control calculations – (with graphics) Node = component (fluid, mechanics, thermics) Port = inlet / outlet parameters to and from nodes Link = connexion between ports Checking data types 28 2005