Download Exercise_4a_Solutions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
1.) The NET force required to keep a 2kg object accelerating at
10m/s2 is:
F  ma
net
Fnet
Fnet
 m 
 2kg10 2 
 s 
 20N
2.) The magnitude of the weight of a 2kg object is:
w  mg
Fnet
Fnet


m
 2kg9.8 2 

s 
 19.6N
Fnet  19.6N
3.) The NET force required to keep a 2kg object moving with a
constant velocity of 10m/s is:
Fnet  ma
constant velocity  a = 0
Fnet  0
Questions 4-6
A 30kg object is at rest on a horizontal surface. The coefficients of
static and kinetic friction are; ms = 0.55, mk = 0.25. A force of
F=125N at 20° above the horizontal is applied to the object.
F=125N
30kg
20°
Forces Acting on Object:
N
F
Fy  F sin
30kg
Fx  Fcos 
f  mN
mg
Newton’s Second Law for Object:
x-direction
F cos   mN  ma
y-direction
N  F sin  mg  0
N  mg  Fsin 
F cos   mmg  Fsin   ma
Fcos   mmg  F sin
a
m
Will the object accelerate?
Fcos   m s mg  Fsin 
a

0
m
F(cos   m s sin)  m s mg
a
0
m
125Ncos 20  .55(sin 20)  .55(30kg)(9.8 m2 )
s
a
30kg
a  0.69 m2  0
s
Object will NOT accelerate.
What is the minimum force required to start the object moving?
F(cos   ms sin )  m s mg
0
m
F(cos   ms sin )  m s mg  0
m s mg
F
(cos   m s sin)
.55(30kg)(9.8 m2 )
F  cos 20  .55(sins20)
F  143.3N
Questions 7-10
In the diagram below object #1 has a mass of 10kg and object #2
has a mass of 8kg. Both inclines are frictionless.
y
x
x
y
#1
#2
1.5m
.75m
30°
55°
Forces Acting on m1 and m2
N1
T
#1
T
N2
#2
m1gsin1
30°
m 2 g cos2
m1 gcos1
55°
m2g sin 2
Newton' s Second Law for m 1
x  direction
T  m 1g sin1  m 1a 1
T  m 1 a1  m1 g sin 1
y  direction
N1  m1 gcos 1  0
N1  m1 gcos 1
Newton' s Second Law for m2
x  direction
T  m 2 gsin 2  m 2 a 2
T  m 2 a 2  m 2 gsin 2
y  direction
N 2  m 2 g cos 2  0
N 2  m 2 g cos 2
m1 a 1  m1 gsin 1  m2 a 2  m2 gsin 2
a 2  a 1
m1 a1  m1 gsin 1  m2 a1  m2 g sin 2
m1 a1  m2 a1  m2 gsin  2  m1g sin1
a 1 m1  m2   m2 gsin 2  m1 gsin 1
m 2 sin 2  m1 sin1 
a 1  g 

 m1  m 2 


 m 8kgsin 55  10kgsin 30 
a1  9.8 2 

10kg  8kg

 s 
a1  .85 m2
s
a2  a1  -.85 m2
s
T  m1 a1  m1 gsin 1
 m 
 m 
T  10kg.85 2   10kg9.8 2 sin 30
 s 
 s 
T  57.5N
T  m 2 a 2  m2 gsin 2


 m 
m
T  8kg.85 2  8kg9.8 2 sin 55

 s 
s 
T  57.4N
Questions 11-13
Three objects are connected as shown below. Object #1 has a mass
of 18kg and moves on a horizontal surface. Object #2 has a mass of
15kg and moves on an incline of 50° . Object #3 has a mass of 30kg.
There is friction on all surfaces with mk= 0.3. When the system is
released object #2 is seen accelerating up the incline.
30kg
Forces and Newton’s Second Law for Object #1
N1
f1
#1
T1
a1
m1 g
T1  f1  m1 a 1
N1  m 1 g  0  N1  m 1g
T1  mm 1 g  m1 a 1
T1  m1a1  mm1 g
Forces and Newton’s Second Law for Object #2
N2
f2
T1
a2
#2
T2
m 2 g sin
m 2 g cos
T2  T1  f2  m 2 gsin   m 2 a 2
N 2  m 2 g cos   0  N 2  m 2 g cos 
T2  T1  mm 2 gcos   m2 gsin   m 2 a2
T2  m2 a 2  T1  mm2 g cos   m2 gsin
Forces and Newton’s Second Law for Object #3
T2
a3
#3
m3g
T2  m3 g  m3 a 3
T2  m3 a 3  m3 g
T1  m1a1  mm1 g
T2  m2 a 2  T1  mm2 g cos   m2 gsin
T2  m3 a 3  m3 g
a 1  a 2  a 3
T1  T2  m 2 a 2  mm 2 gcos   m2 gsin 
m1a1  mm1g  T2  m2a 2  mm2g cos  m2g sin
m1a1  mm1g  m3a 3  m 3g  m2a 2  mm2g cos  m2 gsin
m1a1  mm1g  m3a1  m 3g  m2a1  mm 2gcos  m2gsin
m1 a1  m3 a1  m2 a1 m3 g  mm2 gcos   m 2 gsin   mm1 g
g m3  mm2 cos   m 2 sin  mm1 
a1 
m1  m3  m2
a1 
9.8 30  .55(15)(cos 50)  (15)(sin 50)  .55(18)
18  15  30
a1  1.6 m2
s
a2  1.6 m2
s
a3  1.6 m2
s
T1  m1a1  mm1 g
 m 
 m 
T1  18kg1.6 2  .318kg9.8 2 
 s 
 s 
T1  81.7N
T2  m3 a 3  m3 g


 m 
m
T2  30kg1.6 2  30kg9.8 2 

 s 
s 
T2  246N
Related documents