Download T - Numerical Analysis

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Simulation in Alpine Skiing
Peter Kaps
Werner Nachbauer
University of Innsbruck, Austria
Workshop Ibk 05
1
Data Collection
Trajectory of body points
Landing movement after jumps in
Alpine downhill skiing, Lillehammer
(Carved turns, Lech)
Turn, World Cup race, Streif, Kitzbühel
Workshop Ibk 05
2
Optimal landing
Workshop Ibk 05
3
Landing in backward position
Workshop Ibk 05
4
Workshop Ibk 05
5
Workshop Ibk 05
6
Direct linear transformation
b1 X  b2Y  b3Z  b4
b5 X  b6Y  b7 Z  b8
y
x
b9 X  b10Y  b11Z 1
b9 X  b10Y  b11Z 1
x,y
image coordinates
X,Y,Z object coordinates
bi
DLT-parameters
Z
y
Y
X
x
Workshop Ibk 05
7
Control points at Russi jump
Workshop Ibk 05
8
Camera position at Russi jump
Workshop Ibk 05
9
Video frame on PC
Workshop Ibk 05
10
Unconstrained Newton-Euler
equation of motion
mx  f x
my  f y
mz  f z
My  f
(x,y,z)T
Rigid body
center of gravity: y=(x,y,z)T
J  n    J
Workshop Ibk 05
11
Constrained
equation of motion in 2D
mi xi  f xi  rxi
mi zi  f zi  rzi
Iii  fi  ri
z
( xi, zi )T
αi
unconstrained r=0
Workshop Ibk 05
x
12
Constrained Newton-Euler
equation of motion
My  f  r
f applied forces
r reaction forces
g ( y, t )  0
geometric constraint
G  gy
r  G 
T
d‘Alembert‘s principle
My  G   f
T
Workshop Ibk 05
DAE
13
Constrained Newton-Euler
equation of motion
My  G   f
T
DAE
g ( y, t )  0
index 3
position level
Gy  g
1
index 2
velocity level
Gy  g
2
index 1
acceler. level
G  gy
Workshop Ibk 05
14
Equation of motion
I
0

0

0
0
I
0
0
0
0
0
0

0  u


0 v

0  w
 
0  
 
T(u,t)v
 
w

T
  Mw  G  
 
1
  Gv  g



f


Index-2-DAE
Solved with RADAU 5 (Hairer-Wanner)
MATLAB-version of Ch. Engstler
Workshop Ibk 05
15
Jumps in Alpine skiing
Ton van den Bogert
Karin Gerritsen
Kurt Schindelwig
Workshop Ibk 05
16
Force between snow and ski
Fz a| z| (1 bz)
p
Force between snow and ski
normal to snow surface
Fz,Ende
Fy,Ende
Fz,Mitte
Fy,Mitte
Fz,Vorne
Schneeoberfläche
Skispitze
3 nonlinear viscoelastic contact elements
Workshop Ibk 05
17
Musculo-skeletal model of a skier
m. iliopsoas
mm. glutei
m. rectus femoris
mm. vasti
mm. ischiocrurales
m. gastrocnemius
m. tibialis anterior
m. soleus
muscle model van Soest, Bobbert 1993
Workshop Ibk 05
18
Muscle force
production of force – contractile element
ligaments - seriell elastic element
connective tissue - parallel elastic element
Workshop Ibk 05
19
Muscle model of Hill
total length
L = LCE + LSEE
LCE
LPEE
LSEE
CE
SEE
PEE
contractile element
seriell elastic element
parallel elastic element
Workshop Ibk 05
20
Force of seriell-elastic elements
FSEE  f ( LSEE )  f ( L LCE )
FSEE
LSEE0
LSEE
Force of parallel-elastic elements
FPEE  f ( LPEE )  f ( LCE )
Workshop Ibk 05
21
Force-length-relation
FCE
Fmax
Fmax maximal
isometric force
LCEopt
LCE
2wLCEopt
isometric vCE = 0
maximal activation q = 1
Workshop Ibk 05
22
Force-velocity relation
vCE = d/dt LCE
maximal activation q = 1
optimal muscle length LCE = LCEopt
Workshop Ibk 05
23
Hill equation (1938)
Force-velocity relation
bFmax  avCE
FCE 
b  vCE
concentric
contraction
Workshop Ibk 05
24
Activation model (Hatze 1981)
muscle activation
FCE  qFmax
q0 [ ρ( LCE )γ]2
q
1[ ρ( LCE )γ]2
LCE length of the contractile elements
γ
q0  0.005
calcium-ion concentration
value of the non activated muscle
Workshop Ibk 05
25
 ( LCE) 66200
1.90
LCEopt
2.90

1
LCE
LCEopt
optimal length of contractile elements
Workshop Ibk 05
26
Activation model (Hatze 1981)
Ordinary differential equation for
the calcium-ion concentration 
dγ m(cη γ ), γ(0) γ
0
dt
Control parameter: relative stimulation rate
η f
fmax
0 η1
f
stimulation rate,
fmax maximum stimulation rate
Workshop Ibk 05
27
Equilibrium
FCEFSEEFPEE  f ( L, LCE )
LCE
LPEE
LSEE
LSEELLCE, LPEELCE
FCE(L,vCE,q) = f(L,LCE)
Solving for vCE
vCE = d/dt LCE = fH(L,LCE,q(,LCE))
Workshop Ibk 05
28
State of a muscle
three state variables
L, LCE , γ
L
actual muscle length
LCE length of the contractile element
γ
calcium-ion conzentration
Workshop Ibk 05
29
Force of muscle-ligament complex
according to Hill-Modell
Input: L, LCE, 
compute equivalent torque
muscle force times
lever arm Dk for joint k
Dk constant
Workshop Ibk 05
30
Comparison measured (
) and
simulated (
) landing movement
Workshop Ibk 05
31
Turns in Alpine skiing
Simulation with DADS
Peter Lugner
Franz Bruck
Techn. University, Vienna
Workshop Ibk 05
32
Trajectory of a ski racer
x(t)=(X(t), Y(t), Z(t))T
position as a function of time
Mean value between the toe pieces
of the left and right binding
Track
Position constraint
Z-h(X,Y)=0
Y-s(X)=0
g(x,t)=0
Workshop Ibk 05
33
Equation of Motion
Skier modelled as a mass point
descriptor form dependent coordinates x
Differential-Algebraic Equation DAE
mx  f  r
g ( x, t )  0
f
r
ODE
algebraic equation
applied forces
reaction forces
Workshop Ibk 05
r = -gxT 
34
Applied forces
gravity snow friction
drag
 0 


1
f   0   Nt  cd A v 2 t
2
  mg 


v
unit vector in tangential direction t 
|| v ||

friction coefficient
N
normal force N = ||r||
cd A drag area

density
v
velocity
t
Workshop Ibk 05
35
Snow friction and drag area
piecewice constant values
i
ti 1  t  ti
cd Ai
determination of i , cd Ai , ti
by a least squares argument

x ( ti )  xi
x(ti)
xi
2
minimum
DAE-solution at time ti
smoothed DLT-result at time ti
Workshop Ibk 05
36
Software for Computation
Computations were performed in MATLAB
DAE-solver
RADAU5 of Hairer-Wanner
MATLAB-Version by Ch. Engstler
Optimization problem
Nelder-Mead simplex algorithmus
Workshop Ibk 05
37
Results
truncated values
t<0.58
0.40
0.90
μ
cdA
t>0.58
0.10
0.55
more exact values
[0
, 0.1777]
[0.1777, 0.5834]
[0.5834, 1.9200]
1=0.4064
2=0.4041
1=0.1008
Workshop Ibk 05
(cdA)1=0.9094
(cdA)2=0.9070
(cdA)1=0.5534
38
Comparison more exact values
Workshop Ibk 05
39
Comparison truncated values
Workshop Ibk 05
40
Conclusions
In Alpine skiing biomechanical studies under race conditions
are possible. The results are reasonable, although
circumstances for data collection are not optimal: no
markers, position of control points must not disturb the
racers, difficulties with commercial rights
Results like loading of the anterior cruciate ligament (ACL)
as function of velocity or inclination of the slope during
landing or the possibility of a rupture of the ACL without
falling are interesting applications in medicine.
Informations on snow friction and drag in race conditions are
interesting results, but a video analysis is expensive
(digitizing the data, geodetic surveying).
Workshop Ibk 05
41
Applications
Determination of an optimal trajectory
Virtual skiing, with vibration devices, in
analogy to flight simulators
Workshop Ibk 05
42
Related documents