Download Chapter 15

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 15
Oscillations
Periodic motion
• Periodic (harmonic) motion – self-repeating motion
• Oscillation – periodic motion in certain direction
• Period (T) – a time duration of one oscillation
• Frequency (f) – the number of oscillations per unit
time, SI unit of frequency 1/s = Hz (Hertz)
1
f 
T
Heinrich Hertz
(1857-1894)
Simple harmonic motion
• Simple harmonic motion – motion that repeats itself
and the displacement is a sinusoidal function of time
x(t )  xm cos(t   )
Amplitude
• Amplitude – the magnitude of the maximum
displacement (in either direction)
x(t )  xm cos(t   )
Phase
x(t )  xm cos(t   )
Phase constant
x(t )  xm cos(t   )
Angular frequency
x(t )  xm cos(t   )
 0
xm cos t  xm cos  (t  T )
2

cos   cos(  2 )

T
cos(t  2 )  cos  (t  T )
  2f
2  T
Period
x(t )  xm cos(t   )
T
2

Velocity of simple harmonic motion
x(t )  xm cos(t   )
dx (t )
v (t ) 
dt
d [ xm cos(t   )]

dt
v(t )  xm sin( t   )
Acceleration of simple harmonic motion
x(t )  xm cos(t   )
2
dv(t ) d x(t )
a(t ) 

2
dt
dt
2
  xm cos(t   )
a(t )   x(t )
2
The force law for simple harmonic
motion
• From the Newton’s Second Law:
2
F  ma  m x
• For simple harmonic motion, the force is
proportional to the displacement
• Hooke’s law:
F  kx
k  m
2
k

m
m
T  2
k
Chapter 15
Problem 16
Energy in simple harmonic motion
• Potential energy of a spring:
U (t )  kx / 2  (kx / 2) cos (t   )
2
m
2
2
• Kinetic energy of a mass:
K (t )  mv / 2  (m x / 2) sin (t   )
2
2
 (kx / 2) sin (t   )
2
m
2
2
m
2
m  k
2
Energy in simple harmonic motion
U (t )  K (t ) 
 (kx / 2) cos (t   )  (kx / 2) sin (t   )
2
m
2

2
m
2
 (kx / 2) cos (t   )  sin (t   )
2
m
 (kx / 2)
2
m
2
2

E  U  K  (kx / 2)
2
m
Chapter 15
Problem 37
Pendulums
• Simple pendulum:
• Restoring torque:
   L( Fg sin  )
• From the Newton’s Second Law:
I     L( Fg sin  )
• For small angles
sin   
mgL
 

I
Pendulums
• Simple pendulum:
at

L
s

L
mgL
 

I
mgL
a
s
I
• On the other hand
a(t )   x(t )
2
mgL

I
Pendulums
• Simple pendulum:
mgL

I
mgL


2
mL
2
I  mL
2
g
L
L
T
 2

g
Pendulums
• Physical pendulum:
mgh

I
2
I
T
 2

mgh
Chapter 15
Problem 51
Simple harmonic motion and uniform
circular motion
• Simple harmonic motion is the projection of uniform
circular motion on the diameter of the circle in which
the circular motion occurs
x(t )  xm cos(t   )
Simple harmonic motion and uniform
circular motion
• Simple harmonic motion is the projection of uniform
circular motion on the diameter of the circle in which
the circular motion occurs
x(t )  xm cos(t   )
dx(t )
vx (t ) 
dt
vx (t )  xm sin( t   )
Simple harmonic motion and uniform
circular motion
• Simple harmonic motion is the projection of uniform
circular motion on the diameter of the circle in which
the circular motion occurs
x(t )  xm cos(t   )
2
d x(t )
ax (t ) 
2
dt
2
a x (t )   xm cos(t   )
Damped simple harmonic motion
Fb  bv
Damping
force
Damping
constant
Forced oscillations and resonance
• Swinging without outside help – free oscillations
• Swinging with outside help – forced oscillations
• If ωd is a frequency of a driving force, then forced
oscillations can be described by:
x(t )  xm (d / , b) cos(d t   )
• Resonance:
d  
Answers to the even-numbered problems
Chapter 15:
Problem 2
(a) 10 N;
(b) 1.2 × 102 N/m
Answers to the even-numbered problems
Chapter 15:
Problem 28
(a) 200 N/m;
(b) 1.39 kg;
(c) 1.91 Hz
Answers to the even-numbered problems
Chapter 15:
Problem 38
12 s
Answers to the even-numbered problems
Chapter 15:
Problem 42
(a) 0.499 m;
(b) 0.940 mJ
Answers to the even-numbered problems
Chapter 15:
Problem 58
6.0%
Related documents