Download Chapter 13

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 13
Oscillatory Motion
Periodic motion
• Periodic (harmonic) motion – self-repeating motion
• Oscillation – periodic motion in certain direction
• Period (T) – a time duration of one oscillation
• Frequency (f) – the number of oscillations per unit
time, SI unit of frequency 1/s = Hz (Hertz)
1
f 
T
Heinrich Hertz
(1857-1894)
Simple harmonic motion
• Simple harmonic motion – motion that repeats itself
and the displacement is a sinusoidal function of time
x(t )  A cos(t   )
Amplitude
• Amplitude – the magnitude of the maximum
displacement (in either direction)
x(t )  A cos(t   )
Phase
x(t )  A cos(t   )
Phase constant
x(t )  A cos(t   )
Angular frequency
x(t )  A cos(t   )
 0
A cos t  A cos  (t  T )
cos   cos(  2 )
cos(t  2 )  cos  (t  T )
2  T
2

T
  2f
Period
x(t )  A cos(t   )
T
2

Velocity of simple harmonic motion
x(t )  A cos(t   )
dx (t )
v (t ) 
dt
d [ A cos(t   )]

dt
v(t )  A sin( t   )
Acceleration of simple harmonic motion
x(t )  A cos(t   )
2
dv(t ) d x(t )
a(t ) 

2
dt
dt
2
  A cos(t   )
a(t )   x(t )
2
Chapter 13
Problem 19
Write expressions for simple harmonic motion (a) with amplitude 10 cm,
frequency 5.0 Hz, and maximum displacement at t = 0, and (b) with amplitude
2.5 cm, angular frequency 5.0 s-1, and maximum velocity at t = 0.
The force law for simple harmonic
motion
• From the Newton’s Second Law:
2
F  ma  m x
• For simple harmonic motion, the force is
proportional to the displacement
• Hooke’s law:
F  kx
k  m
2
k

m
m
T  2
k
Energy in simple harmonic motion
• Potential energy of a spring:
U (t )  kx / 2  (kA / 2) cos (t   )
2
2
2
• Kinetic energy of a mass:
K (t )  mv / 2  (m A / 2) sin (t   )
2
2
 (kA / 2) sin (t   )
2
2
2
2
m  k
2
Energy in simple harmonic motion
U (t )  K (t ) 
 (kA / 2) cos (t   )  (kA / 2) sin (t   )
2
2

2
2
 (kA / 2) cos (t   )  sin (t   )
2
 (kA / 2)
2
2
2

E  U  K  (kA / 2)
2
Energy in simple harmonic motion
kA / 2  kx / 2  mv / 2
2
2
2


k 2
2
v
A  x  
m
A  x  mv / k
2
A
2
2
x
2
2

E  U  K  (kA / 2)
2
Chapter 13
Problem 34
A 450-g mass on a spring is oscillating at 1.2 Hz, with total energy 0.51 J.
What’s the oscillation amplitude?
Pendulums
• Simple pendulum:
• Restoring torque:
   L( Fg sin  )
• From the Newton’s Second Law:
I     L( Fg sin  )
• For small angles
sin   
mgL
 

I
Pendulums
• Simple pendulum:
at

L
s

L
mgL
 

I
mgL
a
s
I
• On the other hand
a(t )   x(t )
2
mgL

I
Pendulums
• Simple pendulum:
mgL

I
mgL


2
mL
2
I  mL
2
g
L
L
T
 2

g
Pendulums
• Physical pendulum:
mgh

I
2
I
T
 2

mgh
Chapter 13
Problem 28
How long should you make a simple pendulum so its period is (a) 200 ms, (b)
5.0 s, and (c) 2.0 min?
Simple harmonic motion and uniform
circular motion
• Simple harmonic motion is the projection of uniform
circular motion on the diameter of the circle in which
the circular motion occurs
Simple harmonic motion and uniform
circular motion
• Simple harmonic motion is the projection of uniform
circular motion on the diameter of the circle in which
the circular motion occurs
x(t )  A cos(t   )
dx(t )
vx (t ) 
dt
vx (t )  A sin( t   )
Simple harmonic motion and uniform
circular motion
• Simple harmonic motion is the projection of uniform
circular motion on the diameter of the circle in which
the circular motion occurs
x(t )  A cos(t   )
dx(t )
vx (t ) 
dt
vx (t )  A sin( t   )
Simple harmonic motion and uniform
circular motion
• Simple harmonic motion is the projection of uniform
circular motion on the diameter of the circle in which
the circular motion occurs
x(t )  A cos(t   )
2
d x(t )
ax (t ) 
2
dt
2
a x (t )   A cos(t   )
Damped simple harmonic motion
Fb  bv
Damping
force
Damping
constant
Forced oscillations and resonance
• Swinging without outside help – free oscillations
• Swinging with outside help – forced oscillations
• If ωd is a frequency of a driving force, then forced
oscillations can be described by:
x(t )  A(d / , b) cos(d t   )
• Resonance:
d  
Questions?
Answers to the even-numbered problems
Chapter 13
Problem 20
0.15 Hz; 6.7 s
Answers to the even-numbered problems
Chapter 13
Problem 38
65.8%; 76.4%
Related documents