Download Chapter 11

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Fundamentals of Physics
Chapter 12 Rolling, Torque & Angular Momentum
1.
2.
Rolling
The Kinetic Energy of Rolling
Rolling as Pure Rotation
3. The Forces of Rolling
Friction & Rolling
Rolling Down a Ramp
4. The Yoyo
5. Torque Revisited
6. Angular Momentum
7. Newton’s 2nd Law in Angular Momentum Form
8. Angular Momentum of a System of Particles
9. Angular Momentum of a Rigid Body Rotating About a Fixed Axis
10. Conservation of Angular Momentum
Review & Summary
Questions
Exercises & Problems
2008
Physics 2111 Fundamentals of Physics
Chapter 11
1
Rolling without Slipping
R
s R
Units: (m)
(radians) (m)
vcom   R
Units: (m/s)
(rad/s) (m)
acom   R
2008
Physics 2111 Fundamentals of Physics
Chapter 11
2
Rolling
2008
Physics 2111 Fundamentals of Physics
Chapter 11
3
Example: Value of x for rolling without slipping?


F  ma


  I
x = 0  no initial spin
I 
2
5
m R2
  xF
Rolling without slipping:
a  R
x 
2
R
5
Independent of m and F!
x > 2/5 R  topspin
2008
Physics 2111 Fundamentals of Physics
Chapter 11
4
The Forces of Rolling
Rolling with slipping initially
No Initial Rotation:
Topspin:
Frictional force reduces the speed &
increases the angular speed until:
vcom   R
Frictional force accelerates the ball in the
direction of motion:
increasing v
decreasing 
Rolling without slipping
2008
Physics 2111 Fundamentals of Physics
Chapter 11
5
Translation & Rotation
Add:
To get:
Linear velocity due to rotation
Linear velocity of the center-of-mass
Linear velocity of each point on a rolling wheel.
pure rotation
2008
+
pure translation
=
rolling motion
Physics 2111 Fundamentals of Physics
See p247 in HRW.
Chapter 11
6
The Kinetic Energy of Rolling
A rolling object has two types of kinetic energy: a rotational KE due to its rotation about its
center of mass and a translational KE due to the translation of its center of mass.
The instantaneous axis of rotation is at Point P:
1
IP  2
2
I P  I com  M R 2
v
  com
R
1
1
2
K  I com  2 
M vcom
2
2
K 
KR

KT
K 
vcom
R
K 
2008
1
IP  2
2
Physics 2111 Fundamentals of Physics
Chapter 11
7
The Forces of Rolling
Friction & Rolling: friction is required!
No slipping (aka “smooth rolling”)
acom   R
fs acts on the wheel at P, opposing its tending to slide.
Wheel is rotating about point P.
No work is done by fs!
The wheel does not slow down.

2008
Physics 2111 Fundamentals of Physics
Chapter 11
8
Rolling down a Ramp


F  ma
f S  M g sin   M acom


  I
R f S  I com  com
a   R
 > 0 counter clockwise
a < 0 down the ramp
acom  
2008
g sin
I com
1
M R2
Any body rolling down a ramp!
Physics 2111 Fundamentals of Physics
Chapter 11
9
Uniform Ball Rolling Down
M = 6.00 kg
Radius R
 = 300
h = 1.20 m
v=?
fs = ?
Conservation of energy:
1
2
I 
2
5
M R2
I com  2 
1
2
vcom 
10
7
acom  
vcom   R
Physics 2111 Fundamentals of Physics
gh
g sin
I
1  com 2
MR
a com  
2008
2
M vcom
 M gh
5
g sin 
7
Chapter 11
10
Hoop, Disk and Sphere rolling down a ramp:
acom  
g sin
I
1  com 2
MR
I ring  M R 2
I cylinder  12 M R 2
I sphere  52 M R2
asphere  acylinder  aring
2008
Physics 2111 Fundamentals of Physics
Chapter 11
11
Wheel has constant acceleration & no slipping
M  10 kg
fS = ?
I =?
R  0.3 m
a  0.6 m s
fS
a   R


Fnet  m a
F  fS  m a


 net  I 
 fS R   I 
fS   4 N
I  0.6 kg m 2
2008
Physics 2111 Fundamentals of Physics
Chapter 11
12
Ball rolls down the hill
H = 6.0 m
h = 2.0 m
x=?
x
Energy:
mgH 
1
2
m v 2  12 I  2  m g h
v R
I  52 m R 2
v  7 .5 m s
Projectile: x  4.8 m
2008
Physics 2111 Fundamentals of Physics
Chapter 11
13
Loop the Loop
I  52 m r 2
h  ? when N  0 at top
N  ? at Q when h  6 R
answer : N 
Energy:
mgh 
1
2
50
7
mg
m v 2  12 I  2  m g 2 R  r 
 v2 
Newton:  N  m g   m a   m  
R
 
R  r
answer : h  2.7 R
2008
Physics 2111 Fundamentals of Physics
Chapter 11
14
Torque “Revisited”
 
  r xF

 
  r F sin 


  r F
2008

  r F
Physics 2111 Fundamentals of Physics
Chapter 11
15
Angular Momentum

Consider a particle with momentum p
Its angular momentum
with respect to Point O is :

 
l  rp

 
 
l  r x p  m r x v 

 
l  m r v sin 
2008
Physics 2111 Fundamentals of Physics
Chapter 11
16
All of the particles have the same momentum.
Largest Magnitude of Angular Momentum about O ???
Negative Angular Momentum???
Zero Angular Momentum???
2008
Physics 2111 Fundamentals of Physics
1 and 3
2 and 3
5
Chapter 11
17
Angular Momentum
a)
m = 2.0 kg
r = 3.0 m
v = 4.0 m/s
F = 2.0 N
Angular momentum = ?

 
 
l  r x p  m r x v 

 
l  m r v sin 

m2
l  12 kg
s
b) Torque = ?


  r x


  r
out of the page

F

F sin 

  3.0 N m
2008
Physics 2111 Fundamentals of Physics
out of the page
Chapter 11
18
Newton’s 2nd Law in Angular Momentum Form

 
l  m r x v 

l
Time derivative of the angular momentum:




dl
dr
  dv
 m r 

 v


dt
dt
dt

 


dl
 m r  a  0  r  ma
dt

 
dl
 r  Fnet
dt


dl
  net
dt
The vector sum of all the torques acting on a particle is equal to the time rate of
change of the angular momentum of that particle.
2008
Physics 2111 Fundamentals of Physics
Chapter 11
19
Checkpoint
Largest Torque about Point O???
Positive Torque about Point O???
Zero Torque about Point O???
2008

F3

F1

F2
Physics 2111 Fundamentals of Physics

F4
Chapter 11
20
Angular Momentum of a System of Particles

L 
n
l
i 1

dL

dt

dL

dt
Internal torques sum to zero:
i
n
dli

i 1 dt
n

 net ,i
 
 
 1   2  r1  F2 ,1  r2  F1, 2


F2 ,1   F1, 2



 
 1   2  r1  r2   F2 ,1
i 1


The net external torque acting on a system of particles is equal to the time rate of change
of the system’s total angular momentum.

dL 
  net
dt
2008
Physics 2111 Fundamentals of Physics
Chapter 11
21
Angular Momentum About a Fixed Axis
v  r


 
 
2 
L  r x p  mr x v   mr   I 
2008
Physics 2111 Fundamentals of Physics
Chapter 11
22
A Rigid Body Rotating About a Fixed Axis

Angular momentum of a mass element wrt the origin:
  
 
li  ri  pi  mi ri  vi
li  mi ri vi



li  ri and vi
Component of angular momentum in z-direction:
liz  li sin 
liz  mi ri vi sin 
liz  mi ri vi
vi  ri i  ri 
2008
liz  mi ri 
2
Physics 2111 Fundamentals of Physics
Chapter 11
23
A Rigid Body Rotating About a Fixed Axis

liz  mi ri i
2
Total angular momentum in z-direction:
Lz 
n
l
i 1
iz

n
 m
i
i 1
n
ri 
2
Lz    mi ri   I z
2
i 1


L  I
2008
Physics 2111 Fundamentals of Physics
Chapter 11
24
Checkpoint : same radius same mass same force
Largest Angular Momentum about Center???
Newton’s 2nd Law:

 net

dL

 F R  constant
dt
All the angular momenta are the same.
Largest Angular Speed after a time interval???


L  I
largest   smallest I
I sphere  I cylinder  I ring
2008
Physics 2111 Fundamentals of Physics
Chapter 11
25
Conservation of Angular Momentum
If the net external torque acting on a system is zero, the angular momentum of the system
remains constant, no matter what changes take place within the system.
The Spinning Volunteer:
I f  Ii


L  If f


L  Ii i
 f  i
2008
Spins faster!
Physics 2111 Fundamentals of Physics
Chapter 11
26
Conservation of Angular Momentum
The Diver:


L  I   constant
If the component of the net external torque on a system along a certain axis is zero, then
the component of angular momentum of the system along that axis remains constant, no
matter what changes take place within the system.
2008
Physics 2111 Fundamentals of Physics
Chapter 11
27
Conservation of Angular Momentum
The system = stool + person + spinning wheel



L  Lb  Lwh


L  Lwh
2008
Physics 2111 Fundamentals of Physics
Chapter 11
28
A train starts running on a wheel;  = ?

m
M
IW  M R
v
2
Li  L f  0



vTG  vTW  vW G
L  0  LT  LW
vTG  v   R
m R vTG  IW   0
m R v   R   M R 2   0
 
2008
mv
m  M  R
M  m    0
wheel does not move.
v
M  m   
R
train does not move.
Physics 2111 Fundamentals of Physics
Chapter 11
29
The sun goes out and then shrinks!
Sun goes out
Shrinks size Earth
Period ?
Li  L f

I i i  I f  f
1
2

M R 2 i 

1
2

M r2 f
2
R
 f    i
r
2
T 

 6.37 106 m 
r

T f  Ti    25 days 
8
R
6
.
96

10
m
 


T f  3 minutes revolution
2
2
The sun will become a white dwarf.
2008
Physics 2111 Fundamentals of Physics
Chapter 11
30
Related documents